
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 1

Mobile App Classification with Enriched
Contextual Information

Hengshu Zhu, Huanhuan Cao, Enhong Chen, Senior Member, IEEE,
Hui Xiong, Senior Member, IEEE, and Jilei Tian

Abstract—The study of the use of mobile Apps plays an important role in understanding the user preferences, and thus provides the
opportunities for intelligent personalized context-based services. A key step for the mobile App usage analysis is to classify Apps into
some predefined categories. However, it is a nontrivial task to effectively classify mobile Apps due to the limited contextual information
available for the analysis. For instance, there is limited contextual information about mobile Apps in their names. However, this contextual
information is usually incomplete and ambiguous. To this end, in this paper, we propose an approach for first enriching the contextual
information of mobile Apps by exploiting the additional Web knowledge from the Web search engine. Then, inspired by the observation
that different types of mobile Apps may be relevant to different real-world contexts, we also extract some contextual features for mobile
Apps from the context-rich device logs of mobile users. Finally, we combine all the enriched contextual information into the Maximum
Entropy model for training a mobile App classifier. To validate the proposed method, we conduct extensive experiments on 443 mobile
users’ device logs to show both the effectiveness and efficiency of the proposed approach. The experimental results clearly show that
our approach outperforms two state-of-the-art benchmark methods with a significant margin.

Index Terms—Mobile App classification, Web knowledge, Real-world contexts, Enriched contextual information.

�

1 INTRODUCTION

WIth the wide spread use of mobile devices in
recent years, a huge number of mobile Apps

have been developed for mobile users. For example,
as of the end of July 2013, there are more than 1.9
million Apps and 100 billion cumulative downloads
at Apple’s App store and Google Play. Indeed, mobile
Apps play an important role in the daily lives of mobile
users. Intuitively, the study of the use of mobile Apps
can help to understand the user preferences, and thus
motivates many intelligent personalized services, such
as App recommendation, user segmentation and target
advertising [17], [19], [20], [29], [34].

However, the information directly from mobile Apps
is usually very limited and ambiguous. For example, a
user’s preference model may not fully understand the
information “the user usually plays Angry Birds” unless
the mobile App “Angry Birds” is recognized as a prede-
fined App category “Game/Stategy Game”. Indeed, due to
the large number and high increasing speed of mobile

• H. Zhu and E. Chen are with the School of Computer Science and
Technology, University of Science and Technology of China, Hefei, Anhui
230026, China.
Email: zhs@mail.ustc.edu.cn; cheneh@ustc.edu.cn

• H. Cao and J. Tian are with the Nokia Research Center, Beijing, 100010,
China.
Email: happia.cao@gmail.com; jilei.tian@nokia.com

• H. Xiong is with the Management Science and Information Systems
Department, Rutgers Business School, Rutgers University, Newark, NJ
07102 USA.
Email: hxiong@rutgers.edu

This is a substantially extended and revised version of [32], which appears
in Proceedings of the 21st ACM Conference on Information and Knowledge
Management (CIKM2012).

Apps, it is expected to have an effective and automatic
approach for mobile App classification. Nonetheless, one
may argue that some mobile Apps are associated with
predefined tags or descriptions as metadata in the App
delivery platform (e.g., App Stores) and these data can
be directly used for recognizing the latent semantic
meanings. However, these data may be difficult to obtain
by the third party services, especially in the case that
there exist multiple App delivering channels and it is
not able to track the source of a mobile App, such as
the practical scenario of the Android ecosystem. Also,
those tags are usually not very accurate to reflect the
latent semantic meanings behind the use of mobile Apps.
For example, a security mobile App “Safe 360” is tagged
as “Business” in the Nokia Store [3], which is obviously
too general to capture the latent semantic meaning for
understanding the real App usage.

Indeed, mobile App classification is not a trivial task
which is still under-development. The major challenge
is that there are not many effective and explicit features
available for classification models due to the limited
contextual information of Apps available for the anal-
ysis. Specifically, there is limited contextual information
about mobile Apps in their names, and the only available
explicit features of mobile Apps are the semantic words
contained in their names. However, these words are
usually too short and sparse to reflect the relevance
between mobile Apps and particular categories. For
example, Figure 1 shows the distribution of the number
of mobile Apps with respect to the name length in our
real-world data set. In this figure, we can observe that
the distribution roughly follows the power law, and most
Apps only contain less than three words in their names.

Digital Object Indentifier 10.1109/TMC.2013.113 1536-1233/13/$31.00 © 2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 2

Fig. 1. The distribution of the number of mobile Apps with
respect to the name length in our real-world date set.

To this end, in this paper, we propose to leverage
both Web knowledge and real-world contexts for enriching
the contextual information of Apps, thus can improve
the performance of mobile App classification. According
to some state-of-the-art works on short text classifica-
tion [9], [11], [23], [25], [27], an effective approach for
enriching the original few and sparse textual features is
leveraging Web knowledge. Inspired with those works,
we propose to take advantage of a Web search engine
to obtain some snippets to describe a given mobile
App for enriching the textual features of the App. The
leveraged Web search engine can be a general search
engine such as Google or the vertical App search engine
provided by an App store. However, sometimes it may
be difficult to obtain sufficient Web knowledge for new
or rarely used mobile Apps. In this case, the relevant
real-world contexts of mobile Apps may be useful. Some
observations from the recent studies [14], [17], [19], [28],
[29], [31] indicate that the App usage of a mobile user is
usually context-aware. For example, business Apps are
likely used under the context like “Location: Work Place”,
“Profile: Meeting”, while games are usually played under
the context like “Location: Home”, “Is a holiday?: Yes”.
Compared with Web knowledge, the relevant real-world
contexts of new or rarely used mobile Apps may be more
available since they can be obtained from the context-
rich device logs of the users who used them in mobile
devices. Therefore, we also propose to leverage the
relevant real-world contexts of mobile Apps to improve
the performance of App classification. To be specific, the
contributions of this paper are summarized as follows.

First, automatic mobile App classification is a novel
problem which is still under-development. To the best of
our knowledge, we are one of the first attempts to study
this problem. Furthermore, we are the first to leverage
both Web knowledge and relevant real-world contexts
to enrich the limited contextual information of mobile
Apps for solving this problem.

Second, we study and extract several effective fea-
tures from both Web knowledge and real-world contexts
through the state-of-the-art data mining technologies.
Then, we propose to exploit the Maximum Entropy
model (MaxEnt) [7], [22] for combining the effective fea-
tures to train a very effective and efficient App classifier.

Finally, to evaluate the proposed approach, we con-
duct extensive experiments on the context-rich mobile
device logs collected from 443 mobile users, which con-
tain 680 unique mobile Apps and more than 8.8 million
App usage records. The experimental results clearly
show that our approach outperforms two state-of-the-
art benchmark approaches with a significant margin.

Overview. The remainder of this paper is organized as
follows. In Section 2, we provide a brief review of related
works. Section 3 presents an overview of the proposed
approach and some preliminaries. In Section 4, we give
the technical details of extracting Web knowledge based
features and real-world contextual features, respectively.
Furthermore, we also introduce the machine learning
model for training App classifier. Section 5 shows the
experimental results based on a real-world data set.
Finally, we conclude this paper in Section 6.

2 RELATED WORK

Automatic mobile App classification is a novel applica-
tion problem, however, it also can be regarded as the
problem of classifying short & sparse texts. Short &
sparse texts are very common in real-world services,
such as query terms and SMS, which often contain
limited and sparse textual information for utilizing.
Compared with traditional text classification tasks, clas-
sifying short & sparse text is very challenging and thus
attracts many researchers’ attention. For example, Phan
et al. [23] proposed to leverage hidden topics to improve
the representation of short & sparse text for classification.
The hidden topics are learnt from external data set with
seeds selection to avoid noise, such as Web knowledge.
Sahami et al. [25] proposed a novel similarity measuring
approach for short text snippets, which can also be
proven by a kernel function. Specifically, this approach
utilizes a Web search engine to enrich original textual in-
formation, which can be leveraged for short & sparse text
classification. Furthermore, Yih et al. [30] improved the
measuring approach by exploiting an additional learning
process to make the measurement more efficient. Broder
et al. [9] proposed to extract information from the top
related search results of the query from a Web search
engine, and Shen et al. [27] studied using a Web directory
to classify queries. Cao et al. [11] proposed to use Web
knowledge for enriching both the contextual features
and local features of Web queries for query classification.

Indeed, some of above techniques can be leveraged
for our App classification task. For example, recently,
according to Cao’s work [11], Ma et al. [20] proposed
an automatic approach for normalizing user App usage
records, which can leverage search snippets to build
vector space for both App usages and categories, and
classify App usage records according to the Cosine
space distance. Compared with these works, the work
reported in this paper does not only comprehensively
take advantage of more Web knowledge based features
but also leverages the relevant contexts of mobile Apps
which reflect their usage patterns from user perspective.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 3

Root

Game Bussiness Internet

Action Strategy Office Security Brower Others

SystemSNS… …

… … … …

… … … …

Fig. 2. An example of the mobile App taxonomy.

In recent years, with rapid development of mobile
devices, many researchers studied leveraging real-world
contexts to improve traditional services, such as per-
sonalized context-aware recommendation [17], [19], [29],
[34], context-aware user segmentation [20] and user
context-aware tour guide [14], [28]. As a result, re-
searchers have found many user behaviors are usually
context-aware, that is, some user behaviors are more
likely to appear under a particular context. For exam-
ple, Cao et al. [10] proposed an efficient approach for
mining associations between user App usage and real-
world contexts. A different metric to count support is
developed for addressing the unbalanced occurrences of
App usage records and context data. Bao et al. [6] studied
leveraging unsupervised approaches for modeling user
context and App usage. In this work, the raw context
data and App usage records are first segmented and then
modeled by topic models. Ma et al. [20] studied how
to leverage the associations between contexts and user
activities for discovering similar users with respect to
habit by addressing the sparseness of such associations.
Inspired by these works, we argue that the types of mo-
bile Apps that a user will use may be relevant to his (or
her) contexts. Thus, in this paper we propose to leverage
the relevant contextual information of mobile Apps for
improving the performance of App classification.

3 OVERVIEW

Here, we introduce several related notions and give an
overview of our mobile App classification approach.

3.1 Preliminary
• App Taxonomy. To recognize the semantic meanings
of Apps, we can classify each App into one or more
categories according a predefined App taxonomy. Specif-
ically, an App taxonomy Υ is a tree of categories where
each node corresponds to a predefined App category.
The semantic meaning of each App can be defined by
the category labels along the path from the root to the
corresponding nodes. Figure 2 shows a part of the App
taxonomy used in our experiments.
• Search Snippets. In our approach, we propose to
leverage the Web knowledge to enrich the textual infor-
mation of Apps. To be specific, we first submit each App
name to a Web search engine (e.g., Google or other App
search engines), and then obtain the search snippets as the
additional textual information of the corresponding App.
A search snippet is the abstract of the Web page which
are returned as relevant to the submitted search query.
The textual information in search snippets is brief but

Fig. 3. The snippets in the result pages from Google.

can effectively summarize the corresponding web pages.
Thus, they are widely used for enriching the original tex-
tual information in the short text classification problem.
Figure 3 shows some examples of search snippets for the
App “Plant Vs. Zombies” from Google.
• Context Log. Smart mobile devices can capture the
historical context data and the corresponding App usage
records of users through context-rich device logs, or con-
text logs for short. For example, Table 1 shows an exam-
ple of context log which contains several context records,
and each context record consists of a timestamp, the most
detailed contextual information at that time, and the
corresponding App usage record captured by the mobile
device. The contextual information at a time point is
represented by several contextual features (e.g., Day name,
Time range, and Location) and their corresponding values
(e.g., Saturday, AM8:00-9:00, and Home), which can be
annotated as contextual feature-value pairs. Moreover, App
usage records can be empty (denoted as “Null”) because
users do not always use Apps. In Table 1, location related
raw data in the context logs, such as GPS coordinates or
cell IDs, have been transformed into semantic locations
such as “Home” and “Work Place” by a location mining
approach [20]. The basic idea of such approach is to
find the clusters of user positions and recognize their
semantic meanings through the time pattern analysis.

3.2 Overview of Our Approach
The proposed approach for mobile App classification
consists of two main stages. First, we collect many
context logs from mobile users, and extract both Web
knowledge based features and real-world contextual
features for the Apps appearing in these logs. Second,
we take advantage of the machine learning model for
training an App classifier. Figure 4 illustrates the main
framework of the proposed approach. To be specific,
given a target taxonomy Υ, an App a and a system-
specified parameter K, our approach incorporates the
features extracted from both the relevant Web knowl-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 4

TABLE 1
An example of context log from a mobile user in our real-world data set.

Timestamp Context App usage records
t1 {(Day name: Monday),(Time range: AM8:00-9:00),(Profile: General),(Battery Level: High),(Location: Home)} Angry Birds
t2 {(Day name: Monday),(Time range: AM8:00-9:00),(Profile: General),(Battery Level: High),(Location: On the Way)} Null
t3 {(Day name: Monday),(Time range: AM8:00-9:00),(Profile: General),(Battery Level: High),(Location: On the Way)} Twitter

......
t55 {(Day name: Monday),(Time range: AM8:00-9:00),(Profile: General),(Battery Level: High),(Location: On the Way)} UC Web
t56 {(Day name: Monday),(Time range: AM8:00-9:00),(Profile: General),(Battery Level: High),(Location: On the Way)} Null
t57 {(Day name: Monday),(Time range: AM8:00-9:00),(Profile: General),(Battery Level: High),(Location: On the Way)} Music Player

......
t359 {(Day name: Monday),(Time range: AM10:00-11:00),(Profile: Meeting),(Battery Level: High),(Location: Work Place)} Null
t360 {(Day name: Monday),(Time range: AM10:00-11:00),(Profile: Meeting),(Battery Level: High),(Location: Work Place)} SMS

Search Results

Document 1

Document 2

Document 3

…

Search Results

Document 1

Document 2

Document 3

…

Search Results

Document 1

Document 2

Document 3

…

Context Log

Record 1

Record 2

Record 3

…

Context Log

Record 1

Record 2

Record 3

…

Context Log

Record 1

Record 2

Record 3

…

Game/Strategy Game

Multimedia/Audio

SNS/Community

…

c2 c3c1 cn

c0

...

... ...

... ...

App Taxonomy

Web Search

Engine

Context Log

Database

Training

Data

MaxEnt App

Classifier

Extracting

Contextual Features

Extracting Textual

Features from

Snippets

Words in

App Name

Predefined Semantic Categories

Fig. 4. The framework of our App classification approach.

edge and contextual information of a to classify a into a
ranked list of K categories ca1 , c

a
2 , ..., c

a
K , among Nc leaf

categories {c1, ..., cNc
} of Υ.

When we utilize the machine learning model to train
App classifiers, the most important work is to select
effective features. Intuitively, given an App a and its
category label c, the basic features that can reflect the
relevance between a and c are the words contained in
the name of a. Suppose that the name of App a consists
of a set of words {wa

i }, each wa
i can be considered as a

relevant boolean feature to the category label c. That is,
the occurrence of a word w can be denoted as f(w) = 1
while vise versa we denote f(w) = 0. The weights of
these features can be learned in the training process of
the machine learning model.

A critical problem of this type of features is that the
lengths of App names are usually too short and the
contained words are very sparse. As a result, it is difficult
to train an effective classifier by only taking advantage
of the words in App names. Moreover, the available
training data are usually with limited size and may not
cover a sufficiently large set of words for reflecting the
relevance between Apps and category labels. Therefore,
a new App whose partial, or all words in name do
not appear in the training data will not obtain accurate
classification results if the classifier is only based on the
words in App names. To this end, we should also take
consideration of other effective features which can cap-
ture the relevance between Apps and category labels. In
the following section, we introduce the features extracted
from both the relevant Web knowledge and real-world
contextual information for training an App classifier.

4 EXTRACTING EFFECTIVE FEATURES FOR
APP CLASSIFICATION

In this section we first introduce how to extract effective
textual and contextual features for App classification
from both Web knowledge and real-world contextual
information, respectively. Then we also introduce how
to integrate these features into a state-of-the-art machine
learning model for training App classifier.

4.1 Extracting Web based Textual Features
In this subsection, we introduce how to leverage Web
knowledge for extracting additional textual features of
mobile Apps. To be specific, we investigate two such
kinds of textual features to capture the relevance be-
tween Apps and the corresponding category labels,
namely, Explicit Feedback of Vector Space Model and Implicit
Feedback of Semantic Topics.

4.1.1 Explicit Feedback of Vector Space Model
This type of features exploits the top M results (i.e.,
search snippets) returned by a Web search engine
through leveraging the explicit feedback of Vector Space
Model (VSM) [26]. Given an App a and its category label
c, we first submit a’s name to a Web search engine (e.g.,
via Google API in our experiments). Then, for each of the
top M results, we map it to a category label in the App
taxonomy Υ by building a Vector Space Model. There
are three steps in the process of mapping snippets to
categories by VSM.

First, for each App category c, we integrate all top
M snippets returned by a Web search engine for some
pre-selected Apps labeled with c as a category profile dc.
Particularly, we remove all stop words (e.g., “of”, “the”)
in dc and normalize verbs and adjectives (e.g., “plays →
play”, “better → good”).

Second, we build a normalized words vector −→wc =
dim[n] for each App category c, where n indicates the
number of all unique normalized words in all category
profiles. To be specific, here we have

dim[i] =
freqi,c∑
i freqi,c

(1 ≤ i ≤ n), (1)

where freqi,c indicates the frequency of the i-th word in
the category profile dc.

Finally, for each snippet s returned for App a, we
remove the words which do not appear in any category
profile and build its normalized word vector −−→wa,s in

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 5

a similar way. Then we calculate the Cosine distance
between −−→wa,s and −→wc as similarity, that is,

Similarity(−−→wa,s,
−→wc) =

−−→wa,s · −→wc

||−−→wa,s|| · ||−→wc|| . (2)

According to the similarity, we can map each snippet s
to the category c∗, which satisfies,

c∗ = argmax
c

Similarity(−−→wa,s,
−→wc). (3)

Through the VSM, we can calculate a general label
confidence score introduced in [11] by:

GConf(c, a) =
Mc,a

M
, (4)

where Mc,a indicates the number of returned related
search snippets of a whose category labels are c after
mapping. Intuitively, the GConf score reflects the confi-
dence that a is labeled as c gained from Web knowledge.
The larger the score, the higher the confidence.

However, sometimes GConf score may not accurately
validate the relevance between c and a due to the noise
category labels contained in the mapping list. In practice,
we find the more unique category labels contained in
the mapping list, the more uncertainty for classification.
Therefore, we further define another score named general
label entropy to measure the uncertainty of App classifi-
cation, which can be calculated as follows:

GEnt(c, a) = −
∑
ci �=c

P (ci) logP (ci), (5)

where P (ci) = GConf∗(ci, a) =
M¬c

ci,a

M¬c , where M¬c is the
number of returned documents without category label
c. Intuitively, the GEnt score implies the effectiveness of
GConf score.

4.1.2 Implicit Feedback of Semantic Topics
Although the explicit feedback of VSM can capture the
relevance between App and category label in terms of
the occurrences of words, it does not take consideration
of the latent semantic meanings behind words and may
not work well in some cases. For example, in VSM,
the following words “Game”, “Play” and “Funny” are
treated as totally different measures to calculate the
distance between word vectors. However, these words
indeed have latent semantic relationships because they
can be categorized into the same semantic topic “Enter-
tainment”. According to [23], the latent semantic topics
can improve the performance of short & sparse text
classification. Thus, here we study the textual features
which consider the implicit feedback of semantic topics.

To be specific, we propose to leverage the widely used
Latent Dirichlet Allocation (LDA) model [8] for learning
latent semantic topics. Therefore, according to LDA, a
category profile dc is assumed to be generated as follows.
First, before generating a category profile, K prior condi-
tional distributions of words given latent topics {φz} are
generated from a prior Dirichlet distribution β. Second,
a prior latent topic distribution θc is generated from a

α θ z w β

M
N

K

Fig. 5. The graphical model of LDA, where M, N, and
K are the number of category profiles, words, and latent
topics, respectively; α and β are the prior parameters.

prior Dirichlet distribution α for each category c. Then,
for generating the j-th word in dc denoted as wc,j , the
model firstly generates a latent topic z from θc and then
generates wc,j from φz . Figure 5 shows the graphical
model of LDA.

The process of training LDA model is to learn proper
latent variables θ and φ for maximizing the posterior
distribution of category profiles, i.e., P (dc|α, β, θ, φ). In
this paper, we take advantage of a Markov chain Monte
Carlo method named Gibbs sampling [15] for training
LDA model. This method begins with a random assign-
ment of latent topics to words for initializing the state
of Markov chain. In each of the following iterations, the
method will re-estimate the conditional probability of
assigning a latent topic to each word, which is condi-
tional on the assignment of all other words. Then a new
assignment of latent topics to words according to those
latest calculated conditional probabilities will be scored
as a new state of Markov chain. Finally, after several
rounds of iterations, the assignment will converge, which
means each word is assigned a final latent topic.

After learning latent topics, we extract the features
based on the implicit feedback of semantic topics as
follows. Given an App a, we first leverage a Web search
engine to obtain the top M relevant snippets and remove
the words which do not appear in any category profile.
Then, we map each snippet s to a category by calculating
the KL-divergence between their topic distributions as:

DKL(P (z|s)||P (z|c)) =
∑
k

P (zk|s)lnP (zk|s)
P (zk|c) , (6)

where P (zk|c) = P (zk|dc) and P (zk|s) ∝ P (z)
∏

P (ws|z)
can be obtained through the LDA training process. The
category c∗ with the smallest KL-divergence will be
selected as the label of s, that is,

c∗ = argmin
c

DKL(P (z|s)||P (z|c)). (7)

Finally, we calculate the topic confidence score for a given
category c as follows:

TConf(a, c) =
Ta,c

M
, (8)

where Ta,c indicates the number of returned snippets
for a with the category label c. Intuitively, the TConf
score reflects the confidence that a is labeled as c with
respect to latent semantic topics. The larger the score, the
higher the confidence. Moreover, we also calculate the
topic based general label entropy in similar way according
to Equation 5.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 6

4.2 Extracting Real-World Contextual Features

In this subsection, we introduce how to extract effec-
tive contextual features of mobile Apps from real-world
context logs. To be specific, we study three types of
contextual features, namely, Pseudo Feedback of Context
Vectors, Implicit Feedback of Context Topics and Frequent
Context Patterns.

4.2.1 Pseudo Feedback of Context Vectors

The first type of contextual features considers the feed-
back of context vectors. We assume that the usage
of a particular category of Apps is relevant to some
contextual feature-value pairs. To be specific, given the
Apps in the “Game/Strategy Game” category, they may
be relevant to the contextual feature-pairs (Day period:
Evening) and (Location: Home), respectively. Based on
this assumption, similar to the VSM-based approach
introduced in Section 4.1.1, we build a context vector
for each App category as follows.

First, for each pre-selected and labeled App a, we
collect all context records which record the usage of App
a from the context logs of many mobile users.

Second, we extract the contexts in these context
records which consist of contextual feature-value pairs
and build a context profile Ra = {(pi, freqi,a)} for each
App a from these contexts, where pi denotes a contex-
tual feature-value pair appearing in these contexts and
freqi,a indicates the corresponding frequency. Similarly,
we can build the context profile Rc for each category c
by combining all the context profiles of the pre-selected
Apps labeled with c.

Last, we can define the context vector of App a as−→
Ωa = dim[m], where m indicates the total number
of unique contextual feature-value pairs and dim[i] =

freqi,a∑
i freqi,a

(1 ≤ i ≤ m). Similarly, we can build a context

vector
−→
Ωc for each category c according to Rc.

After building the context vectors for App categories,
we can take the feedback of the pseudo category based
on context similarity as a contextual feature. To be
specific, given an App a and a category label c, we first
build the context vector of a denoted as

−→
Ωa and then

calculate the Cosine distance between
−→
Ωa and all App

categories’ context vectors. Finally, we rank category
labels in descending order according to their Cosine sim-
ilarity to

−→
Ωa. Particularly, we define the pseudo category

c∗ by c∗ = argmax
c

Similarity(
−→
Ωa,

−→
Ωc) and calculate the

category rank distance by:

CRDistance(a, c) = Rk(c)−Rk(c∗) = Rk(c)− 1, (9)

where Rk(c) denotes the rank of category c obtained
by comparing vector distances to a. Intuitively, the
CRDistance ∈ [0, Nc), where Nc indicates the number
of leaf nodes in the App taxonomy Υ. Obviously, the
smaller the distance, the more likely the category label c
is the correct label.

α

θ z v

β

M N

K · F

f π

γ

Fig. 6. The graphical model of LDAC, where M, N, F,
K are the number of context profiles, contextual feature-
value pairs, contextual features, and latent context topics,
respectively; α, β and γ are the prior parameters.

4.2.2 Implicit Feedback of Context Topics

Although the pseudo feedback of context vectors can
capture the relevance between Apps and category labels
in terms of the occurrences of contextual feature-value
pairs, it does not take consideration of the latent seman-
tic meanings behind contextual information. Similarly
as discussed in Section 4.1.2, we observe that many
contextual feature-value pairs have some latent semantic
meanings, e.g., (Day period: Evening), (Is a holiday?: Yes)
and (Location: Home) may all imply the latent context topic
“Relax”. Intuitively, these context topics may capture the
relationships between Apps and category labels more
accurately. For example, we observe that “Games” are of-
ten played in the contexts belong to topic “Relax”, while
“Business Apps” are often used in the contexts belong
to topic “Working”. Thus, here we also investigate the
implicit feedback of context topics for App classification.

An intuitive approach for discovering these context
topics is leveraging topic models, i.e., take the context
profile Rc of each category c as document and each
contextual feature-value pairs as words. However, a
critical challenge when utilizing existing topic models,
e.g., LDA, for modeling contexts is that context values
are not only influenced by latent context topics but also
by context features. For example, BlueTooth information
can only be got when user opens BlueTooth sensor,
and location information often cannot be obtained in
underground subways due to the lack of GPS/cell ID
information. Therefore, to accurately model context in-
formation, in this paper we also leverage the extended
Latent Dirichlet Allocation on Context model (LDAC) [6]
for mining latent context topics.

In the LDAC model, a context profile Rc of category c
is generated as follows. Firstly, a prior context topic dis-
tribution θRc is generated from a prior Dirichlet distribu-
tion α. Secondly, a prior contextual feature distribution
πRc is generated from a prior Dirichlet distribution γ.
Then, for the i-th contextual feature-value pair in Rc, a
context topic zRc,i is generated from θRc , a contextual
feature fRc,i is generated from πRc , and the value of
fRc,i denoted as vRc,i is generated from the distribution
φzRc,i,fRc,i

. Moreover, there are totally K × F prior dis-
tributions of contextual feature-value pairs {φk,f} which
follow a Dirichlet distribution β. Figure 6 shows the
graphical representation of the LDAC model. According
to the model, we have

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 7

TABLE 2
A context topic z learnt by LDAC from our real-world data

set, where each P (p|z) > 0.5.
(Is a holiday?: Yes)
(Day name: Saturday)
(Day name: Sunday)
(Day period: Evening)
(Time range: PM20:00-21:00)
(Time range: PM21:00-22:00)
(Location: Home)
(Profile: General)
(Charging state: Charging)
(Charging state: Complete)
(Battery level: Level 6)
(Battery level: Level 7 (Full))

P (Rc, θRc , zRc , πRc ,Φ|α, β, γ) = P (θRc |α)P (Φ|β)P (πRc |γ)

×
(

N∏
i=1

P (vRc,i|zRc,i, fRc,i,Φ)P (fRc,i|πRc)P (zRc,i|θRc)

)
,

where Φ = {φk,f} and zRc = {zRc,i}. In this paper, we
leverage the Gibbs sampling based approach introduced
in [6] for training LDAC model. After training process,
we can obtain the probabilities P (p|z) and P (z|Rc),
where p is the contextual feature-value pair. Table 2
shows an example of a context topic learnt by LDAC
from our real-world data set, which may indicate the
context of relax time.

Given an App a, we first obtain its context profile
Ra from historical context log database. Then for each
category label c, we calculate the KL-divergence between
their topic distributions:

DKL(P (z|Ra)||P (z|Rc)) =
∑

k

P (zk|Ra)ln
P (zk|Ra)

P (zk|Rc)
, (10)

where P (z|Ra) ∝ P (z)
∏

P (p|z) (p ∈ Ra). Finally, we
rank category labels in ascending order according to
their KL-divergence. Particularly, we define the pseudo
category c∗ by c∗ = argmin

c
DKL(P (z|Ra)||P (z|Rc)), and

for each given category label c we calculate the Topical
Rank Distance by:

TRDistance(a, c) = Rk(c)−Rk(c∗) = Rk(c)− 1, (11)

where Rk(c) denotes the rank of category label c ob-
tained by comparing KL-divergences. Intuitively, the
TRDistance ∈ [0, Nc), where Nc indicates the number
of category labels. Obviously, the smaller the distance,
the more likely c is the correct label.

4.2.3 Frequent Context Patterns
When leveraging above contextual features, we regard
each unique context feature-value pair as an indepen-
dent measure for the relevance between contexts and
the usage of a particular category of Apps. However,
recently some researchers pointed out that some context
feature-value pairs are mutually related rather than sep-
arate elements and their co-occurrences are relevant to
App usage as well [10]. To be specific, given a context
“{(Day period: Evening), (Location: Home)}” and a record
of the usage of App a, the usage of a may be relevant to

TABLE 3
Examples of mined frequent context patterns.

#1
(Is a holiday? Yes)(Day period: Evening)(Location: Home)

⇒ Angry Birds (Game/Strategy Game)

#2
(Day period: Morning)(Location: Work Place)

⇒ Yahoo Mail (Communication/Mail&SMS)

#3
(Day period: Evening)(Location: On the Way)(Profile: Silent)

⇒ Music Player (Multimedia/Audio)

#4
(Day period: Afternoon)(Location: On the Way)

⇒ Ovi Map (Navigation/Maps)

the co-occurrence of feature-pairs (Day period: Evening)
and (Location: Home) but not relevant to (Time range:
PM10:00-11:00) or (Location: Home) separately. Along this
line, we study a contextual feature to capture the rele-
vance between the co-occurrence of contextual feature-
value pairs and the App usage. Specifically, we take
advantage of the frequent context patterns for App clas-
sification as follows.

According to the introduction in Section 3, given an
App a and many context logs {l}, we can find some
combinations of contextual feature-value pairs which are
relevant to the usage of a as frequent context patterns
from {l}. However, it is not a trivial work to mine these
context patterns. As pointed out by Cao et al. [10], the
amounts of context data and App usage records are
usually extremely unbalanced, which makes it difficult
to mine such context patterns through traditional associ-
ation rule mining approaches. An alternative approach is
only leveraging the context records with non-empty App
usage records. However, it will lose the discriminative
information on how likely no App will be used under
a particular context. Fortunately, some researchers have
studied this problem and proposed some novel algo-
rithms for mining such context patterns. For example,
Cao et al. [10] proposed a novel algorithm called GCPM
(Generating Candidates for behavior Pattern Mining)
for mining such context patterns, which are referred to
as behavior patterns in their work, by utilizing differ-
ent ways of calculating supports and confidences. In
an incremental work of [10], Li et al [18] proposed a
more efficient algorithm named BP-Growth for solving
this problem. In this paper, we leverage the BP-Growth
algorithm for mining frequent context patterns. The basic
idea of the algorithm is partitioning the original context
logs into smaller sub-context logs for reducing the min-
ing space and mining frequent context patterns in these
sub-context logs. Table 3 illustrates some examples of
frequent context patterns mined from context logs.

It is worth noting that the mining is performed on
individual users’ context logs because merging all con-
text logs may normalize the relevance between contexts
and App usage. For example, given several users who
usually play action games in buses and several users
usually play other games in buses. If we try to dis-
cover the relevance between contexts and App usage by
merging all users’ context logs, we may falsely conclude
that “In a bus’’ has no significant relevance with the
usage of any category of Apps. In contrast, we can
discover “In a bus” is both relevant to action games and

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 8

other games according to different people by taking into
account each user’s context log separately. After mining
frequent context patterns, we regard the occurrences of
relevant frequent context patterns as boolean features for
determining a proper category label for a in a similar
way of leveraging the words in App names.

4.3 Training Mobile App Classifier
After extracting both textual and contextual features, the
remaining work is to train an efficient classifier, which
can integrate multiple effective features for classifying
Apps. Actually, for this problem, a lot of supervised
classification models, such as Naive Bayes, SVMs, Deci-
sion Tree and Maximum Entropy (MaxEnt) can be taken
advantage of in our framework for App classification.
Among them, in this paper we propose to leverage
MaxEnt for training a mobile App classifier due to
three major reasons [23], [24]: 1) MaxEnt is robust and
successfully applied to a wide range of NLP tasks, such
as POS tagging, and other classification problems. It is
proven to perform better than other alternative models
in classifying insufficient and sparse data. 2) Compared
with other classification approaches, MaxEnt is more
flexible to incorporate different types of features, such as
the various features extracted from a Web search engine
and real-world context logs. 3) MaxEnt is very efficient in
processes of both training and testing, which is suitable
for deployment on mobile devices.

In our problem, MaxEnt defines the conditional prob-
ability of a category label c given an observation App
name a as:

P (c|a) = 1

Z(a)
exp(

∑
i

λifi(a, c)), (12)

where Z(a) =
∑

c exp(
∑

i λifi(a, c)) is a normalization
factor, each fi(a, c) denotes a feature function, and λi

indicates the weight of fi(a, c). Given a training data set
D = {a(i), c(i)}Ni=1, the objective of training a MaxEnt
model is to find a set of parameters Λ = {λi} that
maximize the conditional log-likelihood:

L(Λ|D) = log
∏
d∈D

PΛ(c
(i)|a(i)). (13)

To be specific, we can leverage many machine learning
algorithms to train MaxEnt model, such as Improved
Iterative Scaling (IIS) [13] and Limited-Memory BFGS (L-
BFGS) [21]. In this paper, according to the comparison
results of algorithms for maximum entropy parameter
estimation in [21], we leverage the most efficient algo-
rithm L-BFGS for model training. Once the parameters
Λ have been learned by using a training data set, we
can infer the category label c∗T for the test App aT as
c∗T = argmax

cT
P (cT |aT ,Λ).

5 EXPERIMENTAL RESULTS

In this section, we evaluate our approach through sys-
tematic empirical comparisons with two state-of-the-art
baselines on a real-world data set.

TABLE 4
The types of contextual information in our data set.
Context Value range
Day name {Monday, Tuesday,... , Sunday}
Is a holiday? {Yes, No}
Day period {Morning(7:00-11:00), Noon(11:00-14:00),

Afternoon(14:00-18:00), Evening(18:00-21:00),
Night(21:00-Next day 7:00)}

Time range {0:00-1:00, 1:00-2:00, ... , 23:00-24:00}
Profile {General, Silent, Meeting, Outdoor, Pager, Offline}
Battery level {Level 1, Level 2, ... , Level 7}
Charging state {Charging, Complete, Not Connected}
Location {Home, Work Place, On the Way}.

5.1 Experimental Set Up and Data Set

The data set used in the experiments is collected from
443 volunteers by a major manufacturer of smart mobile
devices (i.e., Nokia Corporation), during the period of
2007 to 2008 in UK. Specifically, all the volunteers were
requested to install a data collection client in their Nokia
S60 smart phones. The client can run in background and
collect rich context data such as GPS data, system infor-
mation, GSM data, sensor data, and App usage records,
with fixed sampling rate. For each mobile device, the
client software automatically uploads the collected data
to the server through the GPRS/Wi-Fi Internet. In the
server, context logs are built from the collected context
data and interaction records for each volunteer. In this
data set, all these 443 users used 680 unique mobile
Apps, and their context logs contain total 8,852,187 con-
text records spanning for from several weeks to several
months. Some similar public data sets can be found
in [1], [2].

Table 4 shows the concrete types of context data the
data set contains. Figure 7 shows the distribution of the
number of mobile Apps with respect to the name length
and the distribution of the number of unique words in
App names with respect to their appearing frequency
in our real-world date set, which clearly validates the
sparseness of textual information in App names.

(a) (b)

Fig. 7. The distribution of (a) the number of mobile Apps
with respect to the name length, and (b) the number of
unique words in App names with respect to their appear-
ing frequency in our real-world date set.

In the experiments, we manually define a two-level
App taxonomy based on the taxonomy of Nokia Store,
which contains 9 level-1 categories and 27 level-2 cate-
gories. Table 5 shows the details of our App taxonomy.

We invited three human labelers who are familiar
with smart mobile devices and Apps to manually label

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 9

TABLE 5
The predefined two-level taxonomy in our experiments.

Level-1 Categories Level-2 Categories
Internet �Web Browser, �Others
Business �Office Tools, �Security, �Others
Communication �Call, �Mail&SMS, �Others
Game �Action, �Strategy, �Others
Multimedia �Audio, �Video, �Others
Navigation �City Guides, �Maps, �Others
SNS �IM, �Blog&Forum, �Others
System �Management, �Performance, �Others
Reference �News, �Utility, �Reading, �Others

Fig. 8. The App distribution of different level-1 category
labels in our data set.

the total 680 Apps with the 27 level-2 category labels.
For each App, each labeler gave the most appropriate
category label by his (or her) own usage experience (all
the Apps in the experiments can be downloaded through
Nokia Store). The final label of each App was voted
by three labelers. Particularly, for more than 95% apps,
the three labelers gave the same labels. Figure 8 shows
the category distribution of the labeled Apps. From this
figure, we can observe that the category labels of the
Apps in our data set cover all nine level-1 categories
and the distribution is relatively even.

5.2 Benchmark Methods

In this paper, we adopt two state-of-the-art baselines to
evaluate the performance of our classification approach.
To the best of our knowledge, there is only one relevant
approach has been reported in recent years, which can
be directly leveraged for automatic App classification.
Therefore, we leverage this approach as the first baseline.

Word Vector based App Classifier (WVAC) is intro-
duced in [20], which is adapted from the Web query
classification approach proposed by Cao [11] for App
usage record normalization. To be specific, given an App
a, it directly calculates the Cosine similarity between cat-
egory word vector −→wc and App word vector −→wa, and label
a with category c∗ i.i.f. c∗ = argmaxc Similarity(−→wc,

−→wa).
The second baseline is originally developed for short

& sparse text classification, which can be extended for
classifying Apps.

Hidden Topic based App Classification (HTAC) is
introduced in [23], whose main idea is to learn hidden
topics for enriching original short & sparse texts. To be
specific, this approach adds semantic topics as additional
textual features and integrate them with words for clas-
sifying short & sparse texts. To leverage this approach
for classifying mobile Apps, we first extract the semantic

topics by the approach introduced in Section 4.1.2, and
then combine them with the words in App names for
training a MaxEnt classifier.

5.3 Evaluation Metrics
To reduce the uncertainty of splitting the data into
training and test data, in the experiments we utilize
ten-fold cross validation to evaluate each classification
approach. To be specific, we first randomly divide 680
Apps into ten equal parts, and then use each part as
the test data while using other nine parts as the training
data in ten test rounds. Finally, we report the average
performance of each approach in the ten rounds of
tests. To evaluate the classification performance of each
approach, we leverage three metrics as follows.

Overall Precision@K is calculated by
∑N

n=1 P@Kn

N ,
where N indicates the number of apps in the test data set
and P@Kn indicates the precision for the n-th test App
with a set of top K predicted category labels CK from a
classification approach. To be specific, P@K = δ(c∗∈CK)

|K| ,
where c∗ denotes the ground truth of category label
for a test App, and δ(∗) denotes a boolean function of
indicating whether ∗ is true (δ(∗) = 1) or false (δ(∗) = 0).

Overall Recall@K is calculated by
∑N

n=1 R@Kn

N , where
R@Kn denotes the recall for the n-th test App with a set
of top K predicted category labels CK from a classifica-
tion approach. To be specific, R@K = δ(c∗ ∈ CK).

Overall F1 Score is calculated by
∑N

n=1 F@Kn

N , where
F@Kn denotes the F1 score for the n-th test App with a
set of top K predicted category labels CK from a classi-
fication approach. To be specific, F@K = 2×P@K×R@K

P@K+R@K .

5.4 Overall Results and Analysis
In order to study the contribution of Web knowledge
based textual features and contextual features in our
approach, we compare four MaxEnt models with differ-
ent features, namely, ME-W (MaxEnt with Words), ME-
T (MaxEnt with words + Web knowledge based Textual
features), ME-C (MaxEnt with words + Contextual Features)
and ME-T-C (MaxEnt with words + Web knowledge based
Textual features + Contextual Features). Because we treat
the words in App names as basic features, all models
take advantage of this kind of features by default.

In our experiments, we choose Google as our Web
search engine to obtain the relevant snippets of Apps,
and set the number of search results M to be 10,
which equals to the number of search results in one
search page. Each search snippet is normalized by Stop-
Words Remover [4] and Porter Stemmer [5]. The number
of latent topic K for both our approach and baseline
HTAC are set to 20 according to the estimation approach
introduced in [6], [33]. Two parameters α and β for
training LDA model are set to be 50/K and 0.1 according
to [16]. The parameters for training LDAC model are
set as similar as [6]. The settings of context pattern
mining approach BP-Growth are similar to [18]. To avoid
over fitting in the training process of MaxEnt model,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 10

(a) Overall Precision@K (b) Overall Recall@K (c) Overall F1 Score
Fig. 9. The overall performance of each classification approach with different evaluation metrics in the cross validation.

TABLE 6
The mean deviations of Precision@K of each

classification approach with different K in the ten-fold
cross validation.

P@1 P@2 P@3 P@4 P@5
ME-W 0.4757 0.2479 0.1643 0.1234 0.0973
HTAC 0.4432 0.1569 0.0912 0.0576 0.0422
WVAC 0.4322 0.1436 0.0791 0.0577 0.0387
ME-C 0.3914 0.1339 0.0849 0.0562 0.0369
ME-T 0.3655 0.1314 0.0764 0.0526 0.0361
ME-T-C 0.2955 0.1009 0.0625 0.0422 0.0334

we also use Gaussian prior for parameter Λ as similar
as [22]. Moreover, both our approach and the baselines
are implemented by standard C++ and the experiments
are conducted on a 3GHZ×4 quad-core CPU, 3G main
memory PC. Here, we evaluate the overall Precision@K,
overall Recall@K and overall F1 score with different K
for each classification approach. To be specific, we set
the maximum K to be 5.

Figure 9 (a) compares the average overall
Precision@K of two baseline methods WVAC, HTAC
and our approach with different features, namely,
ME-W, ME-T, ME-C and ME-T-C in the ten rounds
of tests. First, from the figure we can observe that
the classification performance of only leveraging the
short & sparse texts in App names (i.e., ME-W) is
very limited. Second, compared with the two baselines
WVAC and HTAC, the average overall Precision@K of
our approaches ME-T, ME-C and ME-T-C is improved
consistently. To be specific, for the top 1 results (i.e.,
given K = 1), the improvement is more than 9%
(ME-T), 6% (ME-C) and 19% (ME-T-C) with respect to
WVAC, and 22%, 19% and 34% with respect to HTAC.
Third, comparing ME-T and ME-C, we can observe
that the Web knowledge based textual features are
slightly more effective than contextual features though
both of them effectively improve the performance of
App classification than ME-W, which only leverages
the words in App names. Last, ME-T-C outperforms
all other approaches in terms of average overall
Precision@K. The average improvement than ME-W
across different K is more than 70% (the improvement
exceeds 110% given K = 1), which clearly validates our
motivation of leveraging both Web knowledge based
textual features and real-world contextual features for
improving the performance of App classification.

Similarly, Figure 9 (b) compares the average overall

TABLE 7
The mean deviations of Recall@K of each classification
approach with different K in the ten-fold cross validation.

R@1 R@2 R@3 R@4 R@5
ME-W 0.4757 0.4959 0.4930 0.4936 0.4863
HTAC 0.4432 0.3137 0.2737 0.2302 0.2109
WVAC 0.4322 0.2872 0.2373 0.2309 0.1934
ME-C 0.3914 0.2679 0.2547 0.2247 0.1849
ME-T 0.3655 0.2629 0.2291 0.2105 0.1805
ME-T-C 0.2955 0.2018 0.1875 0.1688 0.1672

TABLE 8
The mean deviations of F1 score of each classification

approach with different K in the ten-fold cross validation.

F@1 F@2 F@3 F@4 F@5
ME-W 0.4757 0.3306 0.2465 0.1974 0.1621
HTAC 0.4432 0.2091 0.1368 0.0921 0.0703
WVAC 0.4322 0.1915 0.1187 0.0924 0.0645
ME-C 0.3914 0.1786 0.1274 0.0899 0.0616
ME-T 0.3655 0.1753 0.1145 0.0842 0.0602
ME-T-C 0.2955 0.1346 0.0937 0.0675 0.0557

Recall@K of ME-W, ME-T, ME-C, ME-T-C and two
baselines with respect to different K in the ten rounds
of tests. From this figure we can observe that our
approaches outperform the baselines and ME-T-C has
the best performance. Another observation is that the
average overall Recall@K of each test approach in-
creases with the increase of K, which is reasonable
because the probability that the ground truth category
label is covered by the predicted results will increase
with more predicted category labels. Moreover, Figure 9
(c) compares the average overall F1 score of all test
approaches in the ten rounds of tests. From this figure
we can observe that ME-T-C consistently outperforms
other approaches and ME-W has the worst classification
performance in terms of F1 score.

Particularly, we conduct a series of paired T-test of 0.95
confidence level which show that the improvements of
our approaches ME-T-C on overall Precision@K, overall
Recall@K and overall F1 score with different K to other
approaches are all statistically significant.

We also study the variances of overall Precision@K,
overall Recall@K and overall F1 score of all test ap-
proaches in the ten-fold cross validation with K ∈ [1, 5].
Table 6, Table 7, and Table 8 show the mean deviations of
these metric values of each approach in the ten rounds of
tests. From these tables we can observe that the variances
of all other approaches are consistently smaller than ME-
W, which implies that taking advantage of additional

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 11

Fig. 10. The objective function values per iteration of
training ME-W, ME-T, ME-C and ME-T-C.

features other than the limited textual information in
App names can improve the robustness of App classifica-
tion. Moreover, ME-T-C has the smallest mean deviations
on all metrics with different K, which implies that it has
the best robustness among all test approaches.

From the above experiments, we can draw the con-
clusions as follows: 1) All other approaches outperform
ME-W, which implies the textual information in App
names is insufficient for classifying Apps effectively and
leveraging additional features can improve the classifi-
cation performance dramatically. 2) The MaxEnt model
with Web knowledge based textual features, i.e., ME-
T, outperforms the two baselines WVAC and HTAC,
which indicates that the combination of multiple Web
knowledge based textual features and basic App name
based features is more effective than single Web knowl-
edge based textual features for App classification. 3) The
MaxEnt model with contextual features ME-C also out-
performs two baselines, which validates the effectiveness
of relevant contexts for improving the App classification
performance. 4) The MaxEnt model which combines the
Web knowledge based textual features and real-world
contextual features, i.e., ME-T-C, outperforms both ME-T
and ME-C, which indicates the integration of two kinds
of additional features in the MaxEnt model can achieve
the best performance.

5.5 The Efficiency of Our Approach
Our approach consists of an offline part and an online
part. In the offline part, the time cost of our approach
majorally comes from the training cost for the MaxEnt
model. Figure 10 shows the convergence curves of ME-
W, ME-T, ME-C and ME-T-C by measuring their log
likelihood for the training data set in one of the ten test
rounds. From these figures we can observe that the L-
BFGS training of all approaches converges quickly. We
can also find that the objective function value of ME-
T-C converges to a better optima compared to other
approaches, and the objective function value of ME-
W converges to the worst optima point compared with
other approaches. The convergence curves for other test
rounds follow the similar trend. Moreover, each iteration
of L-BFGS training averagely costs 2.8 milliseconds for
ME-W, 8 milliseconds for ME-T, 15 milliseconds for ME-
C and 18 milliseconds for ME-T-C, respectively. We also
show the curves of training accuracy with respect to

Fig. 11. The values of training accuracy per iteration of
training ME-W, ME-T, ME-C and ME-T-C.

training iterations of all above approaches in Figure 11,
where training accuracy denotes the classification accu-
racy of the trained model on the training data. Similarly
to the curves of log likelihood, we can observe that
the training accuracy curves of all approaches converge
quickly and ME-T, ME-C and ME-T-C can achieve a high
training accuracy while ME-W can only achieve about
65% training accuracy at best.

In the online part, we need to submit App names to
a Web search engine for getting the relevant snippets.
Indeed, this process can be very fast for a commercial
search engine thus it is not a crucial efficiency problem.
The other online cost of our approach comes from feature
generation, such as calculating label/topic confidence,
calculating category rank distance and mining context
patterns. Actually, the main processes of these tasks can
be calculated offline in advance. To be specific, both
VSM and LDA/LDAC models can be trained offline
and the context patterns can also be mined in advance
and stored in the server. In this case, the online process
for generating features will be very fast (less than 100
millisecond in our experiments).

5.6 Case Study of App Classification
In addition to the studies on the overall performance of
all test approaches, we also manually study the case in
which our approach outperforms the baselines.

For example, Table 9 shows an example of the App
classification results of different test approaches with
respect to different features. In this example, the test App
is “Snake 3D”, which is a popular action games thus the
ground truth category label is “Game/Action Game”. From
the results we can observe that the approach which only
leverages the words in App name, i.e., ME-W, cannot
give the correct label in the top three results. The two
baselines (i.e., WVAC and HTAC) gave the correct label
in the third position. Moreover, the Web knowledge
based textual feature and contextual feature based ap-
proaches (i.e., ME-T and ME-C) gave the correct label
in the second position. In contrast, our approach which
combines both Web knowledge based textual features
and contextual features (i.e., ME-T-C) gave the correct
label in the top one position.

We can have some interesting insights from this case.
Specifically, first, the Web knowledge based textual fea-
tures, i.e., the relevant snippets and topics, can reflect

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 12

TABLE 9
A case study of the App classification results of different

approaches.

App Name Snakes 3D
Ground Truth Game/Action
Words Snakes, 3D

Snippets

→Snake 3d - Free Online Games (FOG)
www.freeonlinegames.com/game/snake-3d

→3D Snake - squid soup : games
squidsoup.com/games/snake/shockholder.html

→Snake 3D - 2 Flash Games
www.2flashgames.com

Topics† Entertainment, Video Games,
Mobile Applications

Context Topics† Relax at Home, Relax at Work Place,
After Work

Context Patt.s

{(Is a holiday?: Yes)(Day period: Evening)
(Location: Home)};

{(Day period: Evening)(Charging state: Charging)
(Location: Home)};

{(Day period: Afternoon) (Profile: Silent)}
Predicted Category Labels

WVAC Multimedia/Video; Game/Others;
Game/Action

HTAC Multimedia/Video; Internet/Others;
Game/Action

ME-W Multimedia/Video; Multimedia/Others;
Game/Others

ME-T Game/Others; Game/Action;
Multimedia/Video

ME-C Multimedia/Video; Game/Action;
Game/Others

ME-T-C Game/Action; Multimedia/Video;
Game/Others

* Limited to space, we only show top three corresponding results.
† The topics are manually labeled for illustration.

that the App is probably a game but cannot determine
whether it is an action game. By further considering the
relevant context patterns, we can find that it is usually
played in a quiet and relaxing environment with long
time to play (in holiday evenings at home with silent
profile), which implies it is probably an action game
since such environment eases users to finish action tasks.
Thus, by considering both types of features, ME-T-C
made a more accurate classification result for the App.

5.7 App Usage based User Segmentation
Except for directly evaluating the classification perfor-
mance of our approach (i.e. ME-T-C), we also study
its effectiveness of segmenting users with respect to
their App usage. Specifically, the user segmentation aims
to cluster users according to their similarities of App
usage, which can motivate many useful services, such as
App recommendation and user habit analysis. However,
it is not a trivial work to effectively segment users
with respect to their historical App usage, since the
original App distribution is very sparse in users’ App
usage records. For example, Figure 12 (a) shows the
distribution of the number of used Apps with respect
to number of users in our data set. From this figure we
can observe that the distribution is very sparse, and each
App only have 11 users on average. If we leverage these
Apps for measuring user similarity, it will be very hard
to obtain good segmentation performance. Fortunately,
if we map each original App to a predefined category

(a) (b)

Fig. 12. The distributions of the number of used (a) Apps
and (b) categories with respect to the number of users.

labels, the sparsity can be reduced. Figure 12 (b) shows
the distribution of the number of used App categories
(i.e., classified by ME-T-C) with respect to the number
of users in our data set. From this figure we can find
that the distribution is relatively even, and each App
category have 270 users on average. Intuitively, using
these category labels for user segmentation may obtain
better performance.

Specifically, in this sub-section we first cluster the
users according to their similarities of App usage which
are calculated by the Cosine similarities between their
original App vectors and App category vectors, respec-
tively, and compare their performance. The original App
vector of user u is denoted as −→ua = dim[n] , where
n = 680 is the number of all unique original Apps.
dim[i] =

freqi,u∑
i freqi,u

, where freqi,u is the frequency of i-
th App in u’s historical context log. Similarly, the App
category vector of user u is denoted as −→uc. To efficiently
segment users, we utilize a clustering algorithm pro-
posed in [12], which does not require a parameter to
indicate the number of clusters but only needs a param-
eter to indicate the minimum average mutual similarity
Smin for the data points in each cluster. The average
mutual similarity for a user cluster C is calculated as
SC =

2×∑
1≤i<j≤NC

Sim(ui,uj)

NC×(NC−1) , where NC indicates the
number of users in C and Sim(ui, uj) denotes the Cosine
similarity between the i-th user and the j-th user in C.

For the clusters based on App category vectors, Smin

is empirically set to be 0.8. However, for the clusters
based on original App vectors, it is difficult to select
a proper Smin because there exist rare pairs of users
whose similarities are relatively big when the similarity
is calculated based on the sparse original App space.
Through several trials, we choose Smin = 0.3 for those
clusters since in this case the results look relatively good.
After clustering, the clusters number of App category
vectors and original App vectors based approaches are
7 and 15, respectively.

To evaluate the segmentation performance, we lever-
age the provided questionnaires in the data set. The
questionnaires are filled by the 443 volunteers, which
contain serval App usage related questions, which can
indicate the user preferences accurately. The main ques-
tions include Which (kinds of) Apps do you use most
frequently?, Which (kinds of) Apps do you most interested
in? and Which (kinds of) Apps do you dislike most?. In
this experiment, we also invite three human evaluators

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 13

(a) (b)

Fig. 13. The segmentation performance based on (a)
original App vectors and (b) App category vectors.

Fig. 14. The values of each App category dimension for
the users in C5 with box plots.

to judge the segmentation performance. Specifically, for
each user cluster C, the three evaluators should first
read the questionnaires filled by users belong to C, and
judge the segmentation performance with a score from
0 (worst) to 2 (best) according to their own perspective.
At last, we use the average score for judging the perfor-
mance of user segmentation.

Figure 13 (a) and (b) show the evaluation results
for each user cluster mined based on original App
vectors and App category vectors, respectively. From
these figures we can observe that the App category
vector based segmentation outperforms the original App
vectors based segmentation, which is because the App
categories can reduce the sparsity of original App space
and thus can capture the user similarity much better. It
also indicates the effectiveness of our approach ME-T-C.

We also study the user clusters based on App cate-
gories and find all of them have obvious relevance with
particular App category preferences. For example, Fig-
ure 14 shows the values of each App category dimension
for the users in one randomly selected clusters C5 with
box plots. From this figure we can clearly see that the
users in the cluster dramatically have high values in
some App category dimensions, which implies they have
the preferences of the corresponding App categories.
To be specific, the users in C5 seem to like the 9-th
and 10-th App categories which indicate the categories
“Game/Action Game” and “Game/Strategy Game”.

6 CONCLUDING REMARKS

In this paper, we studied the problem of automatic App
classification. A critical problem along this line is the
contextual information in App names is insufficient and
sparse for achieving a good classification performance.
To this end, we proposed a novel approach for classi-
fying mobile Apps by leveraging both Web knowledge

and relevant real-world context. To be specific, we first
extracted several Web knowledge based textual features
by taking advantage of a Web search engine. Then, we
also leveraged real-world context logs which record the
usage of Apps and corresponding contexts to extract
relevant contextual features. Finally, we integrated both
types of features into a widely used MaxEnt model for
training an App classifier. The experiments on a real-
world data set collected from 443 mobile users clearly
show that our approach outperforms two state-of-the-
arts baselines.

Although our current approach is both efficient and
effective for solving the problem of automatic App clas-
sification, it is still an open problem about how to embed
this approach into mobile devices. Since mobile devices
have very limited computing resources, it is necessary
to design a more effective service framework. Moreover,
different users may have different App usage behaviors,
thus how to integrate such personal preferences into con-
textual feature extraction will be an interesting research
direction. Finally, in our future research, we also plan to
combine our classification approach with other context-
ware services, such as context-aware App recommender
system, to enhance user experiences.

Acknowledgement. This work was supported in part
by grants from Natural Science Foundation of China
(NSFC, Grant No. 61073110 and 71028002), Research
Fund for the Doctoral Program of Higher Education of
China (Grant No. 20113402110024), the Key Program of
National Natural Science Foundation of China (Grant
No. 60933013), and National Key Technology Research
and Development Program of the Ministry of Science
and Technology of China (Grant No. 2012BAH17B03).
This work was also partially supported by grants from
National Science Foundation (NSF) via grant numbers
CCF-1018151 and IIS-1256016.

REFERENCES

[1] http://realitycommons.media.mit.edu/realitymining.html.
[2] http://research.nokia.com/page/12000.
[3] http://store.ovi.com/.
[4] http://www.lextek.com/manuals/onix/index.html.
[5] http://www.ling.gu.se/l̃ager/mogul/porter-stemmer.
[6] T. Bao, H. Cao, E. Chen, J. Tian, and H. Xiong. An unsupervised

approach to modeling personalized contexts of mobile users. In
ICDM’10, pages 38–47, 2010.

[7] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A maximum en-
tropy approach to natural language processing. Comput. Linguist.,
22:39–71, 1996.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan. Lantent dirichlet allocation.
Journal of Machine Learning Research, pages 993–1022, 2003.

[9] A. Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi, V. Josifovski,
and T. Zhang. Robust classification of rare queries using web
knowledge. In SIGIR ’07, pages 231–238, 2007.

[10] H. Cao, T. Bao, Q. Yang, E. Chen, and J. Tian. An effective
approach for mining mobile user habits. In CIKM’10, pages 1677–
1680, 2010.

[11] H. Cao, D. H. Hu, D. Shen, D. Jiang, J.-T. Sun, E. Chen, and
Q. Yang. Context-aware query classification. In SIGIR’09, pages
3–10, 2009.

[12] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li.
Context-aware query suggestion by mining click-through and
session data. In KDD’08, pages 875–883, 2008.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX XXXX 14

[13] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of
random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19:380–393, 1997.

[14] Y. Ge, Q. Liu, H. Xiong, A. Tuzhilin, and J. Chen. Cost-aware
travel tour recommendation. In KDD’11, pages 983–991, 2011.

[15] T. L. Griffiths and M. Steyvers. Finding scientific topics. In Proc.
of National Academy of Science of the USA, pages 5228–5235, 2004.

[16] G. Heinrich. Paramter stimaion for text analysis. Technical report,
University of Lipzig, 2008.

[17] M. Kahng, S. Lee, and S.-g. Lee. Ranking in context-aware
recommender systems. In WWW’11, pages 65–66, 2011.

[18] X. Li, H. Cao, H. Xiong, E. Chen, and J. Tian. Bp-growth: Searching
strategies for efficient behavior pattern mining. In MDM’12, pages
238–247, 2012.

[19] Q. Liu, Y. Ge, Z. Li, E. Chen, and H. Xiong. Personalized travel
package recommendation. In ICDM’11, pages 407 – 416, 2011.

[20] H. Ma, H. Cao, Q. Yang, E. Chen, and J. Tian. A habit mining
approach for discovering similar mobile users. In WWW’12, pages
231–240, 2012.

[21] R. Malouf. A comparison of algorithms for maximum entropy
parameter estimation. In COLING-02, pages 1–7, 2002.

[22] K. Nigam. Using maximum entropy for text classification. In
In IJCAI-99 Workshop on Machine Learning for Information Filtering,
pages 61–67, 1999.

[23] X.-H. Phan, C.-T. Nguyen, D.-T. Le, L.-M. Nguyen, S. Horiguchi,
and Q.-T. Ha. A hidden topic-based framework toward building
applications with short web documents. IEEE Transactions on
Knowledge and Data Engineering, 23:961 – 976, 2010.

[24] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi. Learning to classify
short and sparse text & web with hidden topics from large-scale
data collections. In WWW ’08, pages 91–100, 2008.

[25] M. Sahami and T. D. Heilman. A web-based kernel function for
measuring the similarity of short text snippets. In WWW ’06,
pages 377–386, 2006.

[26] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Commun. ACM, 18:613–620, 1975.

[27] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. Building bridges for
web query classification. In SIGIR ’06, pages 131–138, 2006.

[28] M. van Setten, S. Pokraev, and J. Koolwaaij. Context-aware
recommendations in the mobile tourist application compass. In
AH’2004, pages 235–244, 2004.

[29] W. Woerndl, C. Schueller, and R. Wojtech. A hybrid recommender
system for context-aware recommendations of mobile applica-
tions. In ICDE’07, pages 871–878, 2007.

[30] W.-T. Yih and C. Meek. Improving similarity measures for short
segments of text. In Proceedings of the 22nd national conference on
Artificial intelligence - Volume 2, pages 1489–1494, 2007.

[31] K. Yu, B. Zhang, H. Zhu, H. Cao, and J. Tian. Towards per-
sonalized context-aware recommendation by mining context logs
through topic models. In PAKDD’12, pages 431–443, 2012.

[32] H. Zhu, H. Cao, E. Chen, H. Xiong, and J. Tian. Exploiting
enriched contextual information for mobile app classification. In
CIKM’12, pages 1617–1621, 2012.

[33] H. Zhu, H. Cao, H. Xiong, E. Chen, and J. Tian. Towards expert
finding by leveraging relevant categories in authority ranking. In
CIKM ’11, pages 2221–2224, 2011.

[34] H. Zhu, E. Chen, K. Yu, H. Cao, H. Xiong, and J. Tian. Mining
personal context-aware preferences for mobile users. In ICDM’12,
pages 1212–1217, 2012.

Hengshu Zhu is currently a Ph.D. student in the
School of Computer Science and Technology at
University of Science and Technology of China
(USTC). He was supported by the China Schol-
arship Council as a visiting research student at
Rutgers, the State University of New Jersey, for
more than one year. He received his B.E. degree
in Computer Science in 2009 from USTC.

His main research interests include mobile
data mining, recommender systems, and social
networks. During his Ph.D. study, he has pub-

lished a number of papers in refereed conference proceedings and
journals, such as CIKM, ICDM and WWW Journal. Two of his papers
were awarded as “the Best Student Paper” of KSEM’11 and WAIM’13,
respectively. He has also been a journal reviewer for TSMC-B, WWW
Journal and KAIS, and an external reviewer for various international
conferences, such as KDD and ICDM.

Huanhuan Cao is currently the principal scien-
tist of Nuomi.com. Before joining Nuomi, he used
to be a key resarch engineer of Hipu Info. Tech.
Ltd, which is a start-up focusing on personalized
news recommendation. Earlier, he worked in
Nokia Research Center as a senior researcher.
During his student time, he received a B.E. de-
gree and a Ph.D. degree from University of Sci-
ence and Technology of China, China, in 2005
and 2009, respectively. Due to his academic
achievement of his Ph.D research work, he won

the Microsoft Fellow and Chinese Academic Science President Award.
In recent years, his major research interests included recommender

system, location mining, and mobile user behavior analysis. In these
fields, he has applied more than 30 invention patents and published
more than 20 papers in high rated conferences and journals.

Enhong Chen (SM’07) is a Professor and vice
dean of School of Computer Science and Tech-
nology at University of Science and Technology
of China (USTC), China. He received the Ph.D.
degree from the University of Science and Tech-
nology of China, China.

His general area of research is data mining,
personalized recommendation systems and web
information processing. He has published more
than 100 papers in refereed conferences and
journals. His research is supported by the Na-

tional Natural Science Foundation of China, National High Technology
Research and Development Program 863 of China, etc. He is the
program committee member of more than 30 international conferences
and workshops. He is a senior member of the IEEE.

Hui Xiong is currently an Associate Professor
and Vice Chair of the Management Science
and Information Systems Department, and the
Director of Rutgers Center for Information As-
surance at the Rutgers, the State University
of New Jersey, where he received a two-year
early promotion/tenure (2009), the Rutgers Uni-
versity Board of Trustees Research Fellowship
for Scholarly Excellence (2009), and the ICDM-
2011 Best Research Paper Award (2011). He
received the B.E. degree from the University of

Science and Technology of China (USTC), China, the M.S. degree from
the National University of Singapore (NUS), Singapore, and the Ph.D.
degree from the University of Minnesota (UMN), USA.

His general area of research is data and knowledge engineering, with
a focus on developing effective and efficient data analysis techniques
for emerging data intensive applications. He has published prolifically
in refereed journals and conference proceedings (3 books, 40+ journal
papers, and 60+ conference papers). He is a co-Editor-in-Chief of Ency-
clopedia of GIS, an Associate Editor of IEEE Transactions on Data and
Knowledge Engineering (TKDE) and the Knowledge and Information
Systems (KAIS) journal. He has served regularly on the organization
and program committees of numerous conferences, including as a
Program Co-Chair of the Industrial and Government Track for the 18th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining and a Program Co-Chair for the 2013 IEEE International
Conference on Data Mining (ICDM-2013). He is a senior member of the
ACM and IEEE.

Jilei Tian received his B.S., M.S. degrees in
Biomedical Engineering from Xi’an Jiaotong Uni-
versity, China and Ph.D. degree in Computer
Science from University of Eastern Finland, in
1985, 1988 and 1997, respectively. He joined
Beijing Jiaotong University faculty during 1988-
1994. He joined Nokia Research Center as se-
nior researcher since 1997, then as principal sci-
entist and research leader, primarily in the area
of spoken language processing and recently
on rich context data modeling and personalized

services. He has authored more than 100 publications including book
chapter, journal and conference papers. He has also about 100 patents
including pending. He has served as member of technical committee
and the editorial board of international conferences and journals.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

