
Mobile Netw Appl (2013) 18:42–59
DOI 10.1007/s11036-012-0413-z

A Mobile App Search Engine

Anindya Datta · Sangaralingam Kajanan ·
Nargis Pervin

Published online: 11 October 2012
© Springer Science+Business Media New York 2012

Abstract With the popularity of mobile apps on mo-
bile devices based on iOS, Android, Blackberry and
Windows Phone operating systems, the numbers of
mobile apps in each of the respective native app stores
are increasing in leaps and bounds. Currently there
are close to one million mobile apps across these four
major native app stores. Due to the enormous number
of apps, both the constituents in the app ecosytem,
consumers and app developers, face problems in ‘app
discovery’. For consumers, it is a daunting task to
discover the apps they like and need among the huge
number of available apps. Likewise, for developers,
enabling their apps to be discovered is a challenge. To
address these issues, Mobilewalla (MW) an app search
engine provides an independent unbiased search for
mobile apps with semantic search capabilities. It has
also developed an objective scoring mechanism based
on user and developer involvement with an app. The
scoring mechanism enables MW to provide a number
of other ways to discover apps—such as dynamically
maintained ‘hot’ lists and ‘fast rising’ lists. In this paper,

A. Datta (B) · S. Kajanan · N. Pervin
School of Computing, National University of Singapore,
13 Computing Drive, 117417 Singapore, Singapore
e-mail: datta@comp.nus.edu.sg

S. Kajanan
e-mail: skajanan@comp.nus.edu.sg

N. Pervin
e-mail: nargisp@comp.nus.edu.sg

we describe the challenges of developing the MW plat-
form and how these challenges have been mitigated.
Lastly, we demonstrate some of the key functionalities
of MW.

Keywords Mobile app · Search engine ·
Semantic similarity · App discovery ·
Scoring

1 Introduction

Consumer software applications that run on smart-
phones (popularly known as mobile apps, or, simply,
apps) represent the fastest growing consumer product
segment in the annals of human merchandising [1, 2].
The absolute number of apps currently in existence, as
well as their rates of growth, are remarkable. At the
time of writing this paper, there are 586,822, 316,403,
43,277, 35,171 number of apps available in Apple, An-
droid, Blackberry and Windows platforms respectively.
Since December, 2010, each month the app growth
rates for the Apple and Android platforms has been
nearly 4 % and 7 % respectively.

The huge number of apps and their increasing
growth rate has created number of problems for the
key constituents of app ecosystem. For consumers,
there are simply too many apps and far too much
fragmentation in these apps (e.g., a large number of
categories). The analogy we often use to describe the
confusion faced by a mobile app consumer is to imagine
a customer walking into a grocery store, needing only
a few items, and finding that all aisles and category
labels have been eliminated, and every product has
been thrown into a pile on the floor. In the same way

Mobile Netw Appl (2013) 18:42–59 43

it is a daunting task for a consumer to navigate through
the native app stores [3, 4] and discover apps they need
and like. This issue has raised concerns in the recent
media forums [5, 6].

The situation of the app developer is even worse.
There are over 900,000 mobile apps in Apple and
Android alone and most smartphone owners can only
identify a handful—this is a nightmare scenario for
developers whose success is contingent upon getting
their apps “found” by consumers. “How will my apps
be discovered?” is the number one question in the
minds of app developers. This issue, known as the “app
discovery” problem, has received wide attention in the
media as well [7, 8].

Thus, it highlights the need to have an effective
system for search and discover the applications—in
essence, a “search engine” for apps. The reader might
point out that each of the native app markets (e.g., the
iTunes appstore and the Android market) offer search
capabilities. However, as has been widely discussed [9,
10], the native app stores are commercially driven and
search results are highly influenced by what the store
wants the consumer to see, rather than being unbiased
on producing relevant output. Moreover, as has also
been widely reported, app store designs are confusing
along many dimensions, such as having multiple display
lists where individual apps are often listed in conflicting
orders. For example, at the time of writing this paper
‘mSpot Music’ was the first featured app in the Android
market [3]. This app is in the category ‘Music & Audio’.
Investigating further in the ‘Music & Audio’ category
of the Android market, we found that ‘mSpot Music’ is
not even in the top 200 apps in that category.

Therefore, there is intense need of creating un-
biased search systems for mobile apps. One of the
earliest entrants in this space is Mobilewalla (MW)
(www.mobilewalla.com). MW is a full fledged app
search engine employing semantic search capabilities.
In addition to supporting basic keyword search, MW
also features a number of other ways to discover apps—
such as dynamically maintained “hot” lists and “fast
rising” lists. One of MW’s major contributions is the
creation of an unbiased scoring system for apps based
on the Mobilewalla Score (MWS). MWS has been re-
cently featured in a number of “top app” lists, the most
prominent being the New York Times Box Scores [11].

In this paper we describe Mobilewalla platform.
In Section 3 and 4, we describe the architecture and
approach. In Section 5, we explain the functionality
of Mobilewalla platform with some screen shots. In
Section 6, we discuss some of the other app search
platforms and compare those with Mobilewalla system.
Lastly in Section 7, we conclude the paper.

2 Overview

As articulated previously, Mobilewalla has been devel-
oped as a search, discovery and analytics system for
mobile apps. Mobilewalla consists of three independent
components.

1. A data collection (DC) component, which collects
data from native app stores (Apple iTunes [4],
Android Market [3], Blackberry App World [12]
and Windows Mobile Marketplace [13]).

2. The Computational Backend (CB), which cleans
and processes data collected by the DC.

3. An user interface and query handler (UI-QH),
which displays data that has been collected in step
1 and computed in step 2, and also handles user
queries from the user interface.

All of these components were created to address a
number of challenges, which we outline below.

1. Developing automated extraction mechanisms, or
crawlers that work on dynamic web sites.

2. Uniform categorizations across different stores,
handling mischaracterization of app content by de-
velopers and automated data cleaning.

3. Allowing real-time search of vast app content
4. Computing “similarity” between, and across, mo-

bile apps
5. Effectively presenting a vast amount of multi-

dimensional information to the user, which in turn
would result in effective searching of apps and the
discovery of apps relevant to the user’s require-
ments.

Below, we describe the high level architecture of the
complete Mobilewalla system, and elaborate on the so-
lution methodologies employed to overcome the above
challenges.

3 Architecture

Figure 1 shows the architecture of the Mobilewalla
platform. The Data Collector (DC) component gathers
information from the native app stores, extracts data
and stores it in the Mobilewalla database (MWDB).
The Computational Backend (CB) interacts with the
MWDB to perform computations which enable users
to search and discover apps efficiently. Finally, the UI-
QH component interacts with the application server to
retrieve the data from MWDB and present it to users.

http://www.mobilewalla.com

44 Mobile Netw Appl (2013) 18:42–59

Fig. 1 Logical architecture of
Mobilewalla

3.1 Data collector (DC)

The essence of the DC component is an automated
extraction system, or a crawler, that fetches useful data
out of the native app stores and writes it to the MWDB.
We first describe the crawler and then discuss the
MWDB.

Designing crawlers for app stores are not an easy
task, as the app stores are not based on a uniform
structure of data representation. Rather, each app store
has its own format. Therefore, we have developed four
different crawlers, one for each of the four native app
stores—(i) iStore [4], (ii) Android Market [3], (iii)
Blackberry App World [12] and (iv) Windows Mobile
Marketplace [13]. Typical crawlers [14–16], that are
widely available as open source software components,
have been developed to fetch information from generic
internet sites. These crawlers work on the assumption
that web content is available in static HTML pages and
do not work on dynamically generated content created
with technology such as AJAX [17], Silverlight [18]
and Flash ActionScript [19]. The native apps stores are
built using these dynamic web technologies. These tech-
nologies are based on scripting languages, which create
component based web pages on the fly. Let us consider
the example of AJAX, arguably the most prevalent
dynamic web development framework. AJAX is de-
pendent on a scripting language called Javascript, which
allows dynamic update of parts of a web page. This
makes it difficult to download and parse the complete
web page as is usually done in standard crawlers. Con-
sider the example of the Google search engine. Google

can crawl static content such as that can be found
in HTML pages, PDF and Word documents. Google
is unable to crawl an AJAX based web site such as
Kayak.com [20]. For a AJAX based web application,
the response from the web server comes in the form of
JSON [21] and not in the form of HTML. To crawl and
extract information from a AJAX based web site, one
needs to parse JSON responses.

Complicating matters further, each app store has
its own JSON response format. To handle this, we
have developed ways to parse these individual JSON
responses to extract app specific details based on the
JQuery library [22]. Consequently, we have had to de-
velop individual store specific crawlers that encapsulate
the knowledge of the JSON format for each individ-
ual store. Understanding the JSON format for each
store and developing “personalized” parser routines
has proven to be a non-trivial task.

Having described our idea behind our automated
extraction mechanism, we now focus on the specific
data item that we extract. These are shown in Table 1.

Our extracted information consists of both static and
dynamic data elements as shown in Table 1. This data
is extracted and stored in the Mobilewalla database
(MWDB) as described below in Section 3.2.

The static data is downloaded and stored in the
database only once. If there occurs any changes to this
data the updated information is downloaded again and
the old data is replaced with this new information. For
example, an app might have its description updated.
In this case, the old description is overwritten in the
database with the new description.

Mobile Netw Appl (2013) 18:42–59 45

Table 1 Data captured by crawler

Static data App name
App description
Release date
Platform
Price
Screen shot
Icon
Category
Seller/developer name
URL
Language
Size of an app (MB)

Dynamic data Comment
Rating
Version
Rank in the store
Times downloaded

Dynamic data, which typically changes frequently,
is fetched by the crawler on a continuous basis. For
dynamic information the old data is never deleted or
replaced. Rather, all dynamic data is time stamped and
retained in the database. As an example, consider the
user rating of an application, an important dynamic
data item. Whenever there is a change in an applica-
tion’s ratings in its native app store, the new rating
is stored along with a date stamp. Similarly, any new
comment, if discovered, are appended to the database
in the same manner.

When a new app is encountered, the crawler down-
loads all data related to this app. The crawler then runs
regularly to track data about this app. How frequently
the crawler will revisit a particular app is determined
dynamically. Let us assume, Ta denotes the interval
at which the crawler will revisit a particular app a.
Initially Ta = 3 h. If in the next iteration the crawler
does not find any update for the app a, the next revisit
will happen at n × Ta period, i.e. Ta will be updated
as Tnew

a = n × Told
a , where n is a positive number. If

even in the subsequent visit, the crawler does not find
any new update or new dynamic data, then Ta will
be updated again. At maximum value of Ta = Tmax

a ,
the value of Ta is no more updated. We set Tmax

a =
48 h, i.e. at every 2 days the crawler will revisit each
app irrespective of whether there is any update or not
for that particular app. Such an approach ensures two
aspects of the crawler. (i) The crawler need not visit
all the apps in a store at every iteration, which reduces
the total time the crawler takes at every run. In our
environment, this enables the crawler to run at every
3 h. For highly dynamic and popular apps, this in turn
guarantees that the crawler will quickly (within 3 h)
identify the new data and put into our system. (ii) For

less dynamic apps, the crawler will identify the new data
within a maximum 2 days. This system creates a balance
between dynamism of the app and the scalability of the
crawler system.

In many instances, existing apps get deleted from its
native stores. In these circumstances, the crawler will
fail to download any data from the store. We keep a
note of how many consecutive times the crawler is fail-
ing to download the information related to a particular
app. If the count crosses a threshold, we assume that
the app has been deleted from the store and mark it as
inactive in our database.

The physical architecture of MW system is shown in
Fig. 2. The crawlers are deployed in 4 small machines
distributed geographically across the world in USA,
Canada, Europe and India. Each of these machines has
a configuration of 2 GB RAM, 40 GB Hard disk and
1 i7 quad-core processor.

3.2 The Mobilewalla database

Having described the crawler system, we now delve
into the Mobilewalla database (MWDB), which is the
store-house of the crawler extracted information. The
MWDB has three components—a distributed repli-
cated no-sql database based on Cassandra [23], file
system and an unstructured data store based on Lucene
text search engine [24].

No-SQL database MW crawler collects data from na-
tive app stores. The native app stores are country
specific. So the Apple store for India is different than
the Apple store in USA. This necessitates crawling
different country specific native app stores and stor-
ing this data. Due to this large number of stores per
native app store, the approximate data size per week
collected by MW crawler is in the range of 1 TB. Over
the last one year, the data size of Mobilewalla across
all countries has grown over 50 TB. It is difficult to
store and manage such a growing data in a traditional
relational database. So, following the current trend in
big data [25], we resort to one of the big data no-sql
database, the Cassandra [23]. As depicted in Fig. 2, the
Cassandra is deployed in the two physical machines as
the two replica groups.

The Cassandra database of MWDB primarily con-
tains structured data captured by the DC such as Ver-
sion Number, Release Date, Price and Ratings. The
Cassandra database is structured in column family. In-
stead of describing each column family, we present the
app column family only in Table 2. The rows in column
family app reflects the information captured in Table 1.
As can be seen in the app column family, the ratings,

46 Mobile Netw Appl (2013) 18:42–59

Fig. 2 Physical deployment
architecture of Mobilewalla

the ranks and the prices are stored as country specific
rows in the app column family.

In the app column family, in addition to the store
specific category r-primary-category, one should
note the row mwcategories. One of the challenges
encountered in Mobilewalla was how to enable users
to browse apps by categories such as Finance, Enter-
tainment or Life Style. Native app stores designate
categories for each app; however these store specified
categories have a number of issues. (1) Developers tend
to wrongly categorize apps based on where it would
attract most users rather than the category to which the
app naturally belongs based on its content. This often
results in gross miscategorization of apps. For instance,
the android app ‘Men and women of passion video’ is in
the category ‘Health & Fitness’ in the Android market,
whereas this app is an adult video app, and should
have been appropriately categorized under ‘Media &
Video’. Natives stores themselves often do not perform
extensive verification of such errors. One of our goals
in Mobilewalla was to remove these miscategorizations
as far as possible. (2) Another major issue is the lack of
uniform categorization across the stores. For instance,
‘Skype’ is under ‘Communication’ category in Android
market, whereas it is under ‘Social Networking’ cate-
gory in iStore. Our goal in Mobilewalla was to present
apps based on a uniform ontology.

To address this issue, we have developed an unique
categorization scheme across multiple stores, called mw

categories. The information about these mw categories
are kept in the mw_category column family (not
shown Table 2). We have developed an automatic cat-
egorization scheme, which is based on the Wikipedia
ontology [26]. At a high level, we use the title and the
description of an app to identify the keywords for an
app. These keywords are matched with the keywords
for Wikipedia categories to categorize the app in a mw
category defined in mw_category column family.

Lucene A key requirement in Mobilewalla was to sup-
port free form keyword search. We use the Lucene text
search engine to fulfill this requirement. In particular
we create an inverted index out of the textual content
attached to each app (including the description and the
title). Subsequently we support search based on this
index.

We should point out however that a straight forward
implementation on top of Lucene was not possible. The
reasons are,

1. The Lucene query processor awards equal weights
to every keywords in a document. This does not
work for us, as we have developed certain pro-
prietary rules about the importance of different
keywords. (e.g., keywords in the title should have
higher weights than keywords in the description)
To handle this we modified Lucene such that vari-
able weights could be attached to keywords.

Mobile Netw Appl (2013) 18:42–59 47

Table 2 Column family “app” in Cassandra

column family: app
row key: <appid>
columns:
name: <value>
description: <value>
version: <value>
mwscore-<country code>: <value>
mwcategories: [<mw_category>, <mw_category>...]
last-update-<country code>: <value>
price-<country code>: <value>
developer: <value>
developerID: <value>
seller: <value>
update-date: <value>
size: <value>
languages: <value> [string]
url-<country code>: <value>
rank-<country code>-<category name>: <value>
rating-cv-all-count-<country code>: <value>
rating-cv-all-star-<country code>: <value>
rating-av-all-count-<country code>: <value>
rating-av-all-star-<country code>: <value>
release-date: <value>
release-date-flag: <crawler|store>
r-countries-<country code>: null
r-categories-<local category code>: null
r-primary-category: <local category code>
r-device: <device>
download-range: <value>
version-required: <value>
permissions: <value>
whats-new: <value>
video-url: <value>

2. Lucene does not perform stemming, i.e. if a user
searches for the word “swimming” the apps related
to the keyword “swim” will not be returned by
Lucene. We incorporated stemming and lemmati-
zation to transform a word in to its base form. The
stemming uses simple word transformation to mod-
ify a word to its base form, e.g. “going” to “go”. The
lemmatizer uses the word’s parts of speech (POS)
and a valid dictionary to identify the original form.
Our lemmatizer is based on the OpenNLP [27]
parser and the Wordnet dictionary. We used both
the original word and the transformed base form of
the word to index the app in the Lucene database.
As depicted in Fig. 2, Lucene is physically deployed
in the master node, where we run all the Mobile-
walla computational tasks.

File system The MW crawler collects image icons and
screen shots related to each app from native app stores.
Due to the size of icons and screen shots, instead of
storing them in the database, we store these images into

a file system. As shown in Fig. 2, the MW file system
is based on Amazon’s Elastic Block Store (EBS) [28].
The file system also works as the persistent storage for
Lucene.

3.3 Computational Backend (CB)

The Computational Backend (CB) receives the base
data gathered by crawler in the form of a message
queue. The message handler processes the messages in
the message queue, cleans the data and stores it in the
Cassandra database. The message queue architecture
allows us to run the crawler and persist the data in
the Cassandra database asynchronously. Another im-
portant component of the CB is the analyics, which
produces a set of proprietary metrics.

Data cleaning The raw data captured by the crawler
has been primarily entered by the developers who
typically make a number of (often intentional) errors.
The data cleaning component of the CB attempts to fix
these errors as follows.

Categorization—We discussed the issues related to
store categories before. As discussed, we can’t rely
on the store and developer provided categories. So
we needed to develop our own automatic catego-
rization system. A key task of the CB is to perform
the Wikipedia based categorization described be-
fore.
Duplicate App Removal—Often app developers
submit an app in a store and for the next version the
app developers do not update the already existing
app, rather they create a new entry in the system.
This creates duplicate entry of the same app in the
store. In iPhone stores we found that about 10,000
such apps exist. We have developed an automatic
identification method of the duplicate apps based
on comparing core app attributes such as app title,
description and developer name.
Deleted or Inactive App—Many apps in native
stores turn out to be orphaned or defunct. These
apps, after release, have not had any version up-
grades or platform upgrades, likely because the
developer abandoned the app. We have developed
a heuristic based solution to identify these defunct
apps based on inactivity periods and platform com-
patabilities.

Mobilewalla Score (MWS) One of the values Mobile-
walla provides to the end user is providing a unique and
uniform scoring mechanism of apps across categories
and platforms. Unlike existing app search engines,
where app rankings are based on highly subjective

48 Mobile Netw Appl (2013) 18:42–59

and often commercial considerations, in Mobilewalla
we wanted to rate and rank apps based on uniform
unbiased criterion. This is achieved through the Mo-
bilewalla Score (MWS). The MWS of an app is based
on several objective parameters that denote how users
and developers are engaged with the app. Some of the
factors used to compute the MWS are (1) the current
and historical ratings of the app in its native store, (2)
the frequency of releases, (3) the duration that the app
is active in the store since its first release, (4) number
of users who rated the app, (5) number of users who
provided comments on this app, (6) the current and
historical rank of the app in its native store, (7) the
number of apps in the category the app belongs to, and
(8) the past history of the developer in producing apps.
The system computes the MWS every night and posts
it in the database. We keep track of the historical value
of MWSs for each app.

The current and historical value of MWS are used to
create a number of popular lists of Mobilewalla.

Hot Apps—This is the list of apps with the highest
MWS at current time.
Fast Movers—This is the list of the apps for which
the change of the MWS is the highest. This mea-
sures the acceleration in the MWS for each app and
report top apps with the acceleration rate.
All Time Greats—This is the list of the apps which
have the highest average MWS over last 3 months.
The MWS is also used to compute a Mobilewalla
developer score (MWDS), which may be used to
denote the overall success of a developer in pro-
ducing mobile apps. The detailed computation of
the MWS and MWDS is given in Section 4.

Similarity computation Mobilewalla enables users to
find apps similar to a particular app and compare the
similar apps on characteristics such as MWS and price
(much like the “if you like this you might also like”
feature in Amazon). We compute a measure of sim-
ilarity between two apps based on the semantic sim-
ilarity across several parameters, such as description,
title and comments received from users. The semantic
similarity computation of these features are done us-
ing hypernym, hyponym and synonym relationships in
Wordnet [29]. Based on the importance in describing
features of an app, the similarity measurement across
each of these parameters is given different weight in
the final similarity measurement. For example, the sim-
ilarity on title is given more weight, than the similarity
on description. The similarity on comment is given the
least weight. For each app, we identify the similar apps
that cross a threshold on similarity measurement with

respect to that app. The exact details of the similar-
ity computation algorithm is proprietary to Mobile-
walla and so is not described in detail here due to IP
issues.

In-memory index and index builder One of the ob-
jectives of the Mobilewalla application is to enable
complex search in the database in real time. For this,
the in-memory index contains materialized views of the
database containing following items (1) The inverted
index of the Lucene data and (2) Index of the app
on the basis of app parameters, such as price, release
date, and developer name. These indexes are pre-built
nightly, and reduce the complex join operations that
require querying the database against some of the user
queries.

The message queue and message handler are imple-
mented using RabbitMQ [30]. The analytics is imple-
mented using Hadoop Job Tracker [31] and Hadoop
NameNode system [32]. The RabbitMQ, Hadoop Job-
Tracker and Hadoop NameNode, all of them run in
the same master node along with the web server (httpd
server) and the application server (apache tomcat)
(Fig. 2). Most of the analytics such as similarity com-
putation, computation of hot app, computaton of fast
movers app and, computation of Mobilewalla Score
(MWS) are done off-line in batch mode. The Hadoop
Job Tracker and Name nodes are responsible for dis-
tributing the computation across multiple nodes in
replica group 2 by MapReduce framework. The nodes
in replica group 2 do the actual computation and persist
the some of the computed output (such as MWS) in the
cassandra database in the node. Other computational
output such as specialized list of apps (e.g., hot apps)
are fed back to the Hadoop Job Tracker in the master
node to consolidate (reduce of MapRedue) and store
it in memory for fast access by users. Because the
master node does not do much of the computation the
overhead due to Hadoop JobTracker and NameNode
is very minimal in the master node.

3.4 User interface and query handler

Users can interact with the MW system using a browser
(desktop or mobile device based browser) or mobile
apps in Android and iOS platform. Both the MW app
and web site interact with the MW system over the
internet, using JSON format. The JSON request and
response is handled by the apache tomcat application
server. Most of the incoming requests from the users
through MW mobile app or web site can be fulfilled
by directly fetching data from MWDB. The keyword
based search is handled through query generator.

Mobile Netw Appl (2013) 18:42–59 49

The query generator module receives user provided
query keywords for searching the app database. The
query generator transforms this user query across sev-
eral dimensions to generate more than one query. The
result of the query generator is a series of queries
ordered in priority. These queries are executed in
Lucene’s in-memory index to identify the app. If the
prior queries result in a threshold number of rele-
vant apps from the Lucene in-memory index, the later
queries are not executed.

The query generator expands the query in following
different ways.

Stemming and lemmatization—The words in the
user query will be stemmed and lemmatized to
create original base form of the query words. Ad-
ditional queries will be generated using these base
forms. For example, a user query “swimming” will
create a second query “swim”.
Formulation of AND and OR query—First we do
“AND” query for the user given keywords. If the
“AND” query does not return sufficient result, we
expand the query using “OR” across the user given
keywords. For example, if user given query is “Rac-
ing Bicycle”, then the two queries “Racing AND
Bicycle” and “Racing OR Bicycle” are formed.
If the query “Racing AND Bicycle” returns less
than a threshold number of results (in Mobile-
walla implementation that threshold value is 20),
the OR query “Racing OR Bicycle” is executed.
This “AND” and “OR” combination is also applied
on the original base form of the user given query
keywords.
Query Expansion—If the user given query does not
return a threshold number of results, we expand
the query using synonyms and hyponyms of the
query keywords. For example, a query “Bollywood
Movie” will be expanded into “Bollywood Cin-
ema” and “Bollywood Picture”, because “Cinema”
and “Picture” are the synonym and hyponym of the
word “Movie”.

4 Scoring computation

In Mobilewalla (MW), one of our key contributions is
a set of analytics that provide practically useful intel-
ligence regarding the mobile app ecosystem. While we
compute a number of such artifacts (such as Hot App,
New App, Fast Moving App), two key analytics that
drive most others are (a) the Mobilewalla Score (MWS)
and (b) the Mobilewalla Developer Score (MWDS).

4.1 Mobilewalla Score (MWS)

The Mobilewalla Score (MWS) is a numerical value,
between 0 and 1, that is computed for every app in
the MW system, for a given platform. The MWS values
are representations of how successful, i.e., how “hot”
an app is at a given time, on a given platform, with
higher values indicating “hotter” apps. In other words,
an Android app with a MWS of 0.9 is considered more
successful than an Android app with a MWS of 0.7.

All app stores have some way of indicating app
“success”. Yet, for users, these methods are not useful
(in fact, quite confusing), for the following reasons:

(1) It turns out that not only do app stores have
“hotness” metrics, they actually have several such
measures, which often conflict, providing very un-
clear signals to the user. Table 3 below outlines
the various app success metric attributes available
in the Apple, Android, Blackberry and Windows
7 stores. The problem arises from the fact that
these attributes often provide conflicting signals.
Take the app “Always Up!” (AU) By AlphaWeb
Plus LLP in the apple app store for example. At
the time of writing of this paper, AU appears
in the top 10 list of the Games-Arcade category.
However, when we turn to user ratings, another
key metric widely used by consumers, we find
that AU has very few ratings only. Indicating high
likelihood of the fact that AU is yet to find wide
distribution among users. Further analysis reveals
that this is not surprising, given that AU was
launched only on November 2011 it is too new to
have garnered much user attention or popularity.
In other words, the two important “hotness” at-
tributes in the apple app store, namely rank and
ratings are glaringly conflicting in this (it turns out
that such examples are very common, see the app
“Wonga” and “Fish4jobs” which appears in the
Top 10 in categories “Finance” and “Business”
respectively. Both the apps were released on early
October and November 2011 and has very few
ratings).

Table 3 Important metrics for various app stores

App store Metrics

Apple Apple store rank, rating stars and rating counts
(current and all versions)

Android Android rank, rating stars and rating counts
Blackberry BB store rank, rating stars, NumReviews

(from users)
Windows 7 Win7 store rank, rating stars, rating count

50 Mobile Netw Appl (2013) 18:42–59

(2) A huge problem in app stores is that the pub-
lished metrics themselves are quite suspect in their
value to users. For instance, consider the rank
attribute in the Apple store. The importance of
this attribute is undeniable, as it controls the order
in which apps are made visible to the users—
the expectation is that it captures how popular
apps are in the market, analogous to the “best-
seller” or “billboard chart” features well known in
other popular consumer spaces like books, movies
or music. Yet, rank clearly is not driven solely
by how popular an app is—otherwise how could
an app like “Wonga” and “Fish4jobs” (described
above), achieve a top 10 rank within a few days
of its launch, with very few rating for the apps?
Evidently, app ranks embody the same bias as
search engine rankings where it is well known that
placement rankings of links in search results are
quite influenced by purely commercial considera-
tions. This creates a problem when an individual
consumer is interested in searching for popular
puzzle games or a health care company, interested
in finding optimal placement for its mobile ads,
wants to discover the most popular health apps.
There are no ways to do this. In these, and most
other use cases, app store ranks are not very trust-
worthy.

(3) The store provided metrics do not discriminate
across the various categories and subcategories,
making comparisons across categories impossible.
However, users need to make such judgments.
To see this, consider the following example: a
large youth targeted clothing and accessories store
wishes to advertise on the top apps across the
“games”, “lifestyle” and “entertainment” cate-
gories. Their advertising budget is limited, requir-
ing them to find the top 15 apps across these
categories. Based on store provided metrics, the
best they can do is pick the top 5 apps in each of
the 3 separate categories. However, this method
will almost surely not yield the desired outcome,
i.e., to pick the top 15 apps overall—it might very
well be that the 15th ranked app in games is way
more popular than the top ranked app in lifestyle
(case in point: in Apple’s app store, there are
over 40,000 unique games while there are only
5000 unique lifestyle apps). It is clearly desirable,
therefore, that there exist ways in which apps can
be compared across categories—not just inside
categories.

All of the above point out a glaring hole in current
app stores—the lack of a unifying metric that allows

users to perform a consistent, unbiased and across the
board comparison of apps. In MW, we introduce the
MWS metric as the industry’s first such measure. The
way we compute MWS, needless to say, is one of our
core contributions.

Intuitively, we gather a number of available “sig-
nals” regarding the “hotness” of apps as mentioned
in Table 3. From these signals, we extract those that
are the most significant (mathematically, we remove
auto-correlations). Based on this “core signal set” we
create a mathematical model for MWS—this model,
simply speaking, is a formula that combines these signal
variables to output a single number between 0 and
1—the MWS value of an app. The MWS formula is
presented below omitting the details for the sake of
simplicity. Though the formula below will give an idea
on the basis of MWS computation, the actual MWS
computation is little different that includes lot of other
sources such as Twitter, Facebook, Youtube and Blog
postings related to an app. Due to intellectual property
issues, we refrain from presenting the exact MWS com-
puation in this paper.

Pa
c = (N Pc − Ra

c)

N Pc
, ∀c ∈ C, ∀a ∈ A (1)

EPa = max
∀c∈C

Pa
c, ∀a ∈ A (2)

CRa =
(∑

v∈Va

Sa
v × Ua

v

)
/(Ta + 1), ∀a ∈ A (3)

ERa = ln(CRa+1) − ln(min∀b∈A(CRb)+1))

ln(max∀b∈A(CRb)+1) − ln(min∀b∈A(CRb)+1)
, ∀a∈ A

(4)

Table 4 Notation

Symbol Meaning

C Set of all categories
A Set of all applications
Ad Set of all applications developed by developer d
Va Set of all versions for an application a
Nc Number of applications in a category c
N Pc Number of applications whose primary category is c
Ra

c Rank of an application a in a category c. If the
application a is not ranked by the store
(i.e. more than 241 in AppStore,Ra

c = Nc/2
Sa

v The number of stars for an application a for a
version v

Ua The number of ratings received by the application a
for all versions

Ua
v The number of ratings received by the application a

for version v

Ta The number of months the application a is in the
store starting from the first version

Mobile Netw Appl (2013) 18:42–59 51

For apps with ranking,

MWScorea = 0.7 × EPa + 0.3 × ERa (5)

For apps without ranking,

MWSa = ERa × min(∀b∈A,∃b∈c&a∈c,∀c∈C)

(
MWSb)

(6)

In Eq. 1 we compute the percentile rank Pa
c , which is

a value between 0 and 1, where higher value indicates
the app a is highly ranked in the category c in the
native store. The Eq. 2 computes effective percentile
rank EPa, the maximum percentile rank of an app a
across all categories it belongs to. Equation 3 computes
the combined rating CRa per month of an app a. ERa

computed in Eq. 4 is the normalized effective rating
of an application a appropriately scaled by logarithmic
function and normalized across all apps. Finally, in
Eq. 5, we compute the Mobilewalla score (MWS) of
app a by combining the normalized effective rating
(ERa) and effective percentile rank (EPa) with appro-
priate weightage decided based on experimental and
statistical analysis. For unranked apps, we do not have
any EPa, so we compute the MWS by appropriately
scaling the lowest score obtained by a ranked app in the
same category as the app a, by the normalized effective
rating ERa. Refer Table 4 for the meaning of notations
used in Eq. 1–7 for MWS and MWDS computation.

4.2 Mobilewalla developer reputation score (MWDS)

The Mobilewalla Developer Reputation Score (MWDS),
is a numerical value between 0 and 100, awarded to
each developer, that indicates how “good” the devel-
oper is on a given platform. In other words, a developer
on the apple platform with a MWDS of 85 is regarded
as having “better” reputation than a different apple
developer having a MWDS of 65.

Generally speaking, MWDS attempts to explicitly
capture the “manufacturer” reputation rankings im-
plicitly associated with most consumer products. For
instance, when we decide which movie to watch, the
reputation of the film director is an important input pa-
rameter. Or when we purchase a book, the reputation
of the author plays a key role. This occurs because there
is an expectation that a “manufacturer” who has been
successful before is more likely to be successful again,
compared to one with a lesser history of success.

We tested this theory in the mobile app market, and
found that there is strong statistical support of it—
among developers with multiple apps, prior success is
strongly correlated with observed “re-success”. Hence,
the knowledge of developer reputation rankings is ex-
tremely helpful when looking for apps. However, there

is one major difference between mobile apps and other
consumer products that make the acquisition of such
knowledge very difficult in the case of the former.

In virtually every consumer space (movies, cars,
shoes, electronic devices, etc.) both the number of
products and the number of manufacturers is “rela-
tively” small. For instance, worldwide, at any given
time, there are less than 500 directors making movies,
or fewer than 250 manufacturers making smart phones.
At scales like this, reputation rankings are implicitly
developed and maintained. For example, pretty much
any informed movie watcher in the US (and abroad)
would consider the Coen brothers and Steven Spielberg
to be moviemakers with high reputations, much in the
same way as Versace and Louis Vuitton are consid-
ered reputed developers of women’s handbags. Such
reputations are developed implicitly, but are quite well
known—these reputations also figure prominently in
the consumption decisions of users.

For mobile apps, unfortunately, such implicit evo-
lution of manufacturer reputation is impossible, due
to the scale of the app market. Consider the fact that
there are currently over 225,000 mobile app developers
globally, contributing to a market of near 900,000 apps
at this time, expected to cross 1 million in the next few
months. Moreover, the high category fragmentation
of the app market (apple itself has over 35 category
segments) makes it impossible to keep track of implicit
reputations. For instance, consider a user wishing to
search for a utility app such as an alarm clock—it is
impractical for this user to know who the most reputed
alarm clock developers are (there are over 250 alarm
clocks apps out there).

It is with this problem in mind that we envisioned
the creation of an “explicit” developer reputation
parameter—MWDS is the result. Effectively, MWDS
provides app users the same ability to discriminate
and choose that is commonly available in every other
consumer choice scenario, by making explicitly avail-
able a critical decision variable—the reputation of the
manufacturer.

For app developers themselves, MWDS promises to
be a powerful marketing tool. Clearly, in the hyper-
crowded app developer ecosystem, it is critical to stand
out. The MWDS value for developers is a great way of
doing that.

The intuition behind MWDS computation is as fol-
lows: Let us take John the developer. To compute
John’s MWDS,. we consider all apps developed by him
and take into account the Mobilewalla App Scores
(MWS) for these apps, over time. We then mathemat-
ically combine these items to produce MWDS. Leav-
ing all the small details, the MWDS formula can be

52 Mobile Netw Appl (2013) 18:42–59

Fig. 3 Platform navigation
page

presented by Eq. 7, which is the average score of 70 %
top apps (based on MWS) written by the developer d.

MW DSd = Avg(a∈Ad
⋂

top 70 % of Ad)

(
MWSa) (7)

5 Screen shots and descriptions

The Mobilewalla architecture is flexibly implemented
using a JSON interface. The application server pro-
vides a set of JSON APIs that can be invoked by
any client over HTTP. Currently, the clients supported
include iOS devices (i.e., iPhone/iPod/IPad), Android
devices and desktop web applications. All these clients
communicate with the Mobilewalla server application
using the same JSON API set, but differ in the user
interface offered to the end user. We will now proceed
to demonstrate some of the important functionalities
of the Mobilewalla application by using desktop web
application as an example (the user may interact with
this application at www.mobilewalla.com).

When the user arrives at the Mobilewalla applica-
tion, the first step is to choose a platform of interest,
i.e., the user must specify which smartphone platform
is of interest to the user—iPhone/iPod, iPad, Android,
Blackberry or Microsoft (the user may also choose a
“don’t care” option, marked as “All” in Mobilewalla)
as shown in Fig. 3. Once a platform is chosen the
user will be directed to the main “splash page” shown
in Fig 4. In the screenshot shown in Fig. 4, the plat-
form chosen appears on the extreme right of the top
menu bar (iPhone/iPod in this case). This means the
all apps presented to the user will correspond to the
iPhone/iPod platform until this is explicitly changed, by
selecting the “Choose Platform” widget present on the
extreme left of the top menu bar.

From this screen, the user may choose to navigate
the app world in a number of ways. The first, and
the most common method of interaction is by entering
a search query in the keyword input box. Let’s as-
sume the user enters the search term “earth photo”.
Mobilewalla returns a set of apps that fit the user’s

Fig. 4 Main menu page

http://www.mobilewalla.com

Mobile Netw Appl (2013) 18:42–59 53

Fig. 5 Keyword search
results page

interest as shown in Fig. 5—in this view Mobilewalla
provides not only the app name, but also a number
of other core features such as author and price. One
notable feature of this view are the relevance and Mo-
bilewalla meter (MW Meter) indicators present in each
app box. Relevance indicates the quality of “fit” of that
app with respect to the input search query, whereas
MW Meter is an encapsulation of the “goodness” of

the app as measured by Mobilewalla (this is based on
the Mobilewalla Score metric described earlier). Also,
while not shown the screenshot, we also segment the
apps by Free and Paid and allow a number of options
to sort the result set (the user may view these by visiting
mobilewalla.com).

The user may choose any app from the app-list view
just described and delve into its details. Let us assume

Fig. 6 App details page

http://mobilewalla.com

54 Mobile Netw Appl (2013) 18:42–59

Fig. 7 Apps by developer
page

the user chooses the Google Earth app. In this case she
will be presented with the detail view of this app, shown
in Fig 6. In this view, Mobilewalla displays details
such as the app description and screenshots and also
allows the user to view a number of other interesting
artifacts related to this app, such as “Apps by Author”
(other apps created by the author of the app detail
being viewed), “Mobilewalla Score”(the Mobilewalla
score history related to this app over the past 14 days),
“Comments”, and “Similar Apps” (similar to the ”if
you like this, you might also like” feature in Amazon).

The screenshots corresponding to the “Apps by Au-
thor” and “Similar Apps” for the app Google Earth
are shown in Figs. 7 and 8. The above two paragraphs
describes how a user might interact with Mobilewalla
by performing a keyword search and then drilling down
on the results. However, keyword search is just one of
many ways that the user can navigate Mobilewalla. He
might also choose to view apps by categories, or choose
one of the many “pre-defined” list options such as “Hot
Apps”, “Fast Movers” and “New Apps”. Choosing the
“Browse my category” option reveals a number of

Fig. 8 Similar app page

Mobile Netw Appl (2013) 18:42–59 55

Fig. 9 Category search
results page

category icons from which the use may navigate the app
world—Fig. 9 shows the results of choosing the “Maps
& Navigation” category.

Similarly choosing “Hot Apps” displays the list of
the top 1,000 apps ordered by their Mobilewalla Scores
(Fig. 10), while “Fast Rising” apps are those whose
Mobilewalls scores have demonstrated the steepest as-
cent, i.e., apps getting hot the fastest (Fig. 11). “New

Apps” are those that are less than a month old (Fig. 12).
In every case a number of sort options are available that
allow users to manipulate the result set along various
dimensions.

While Mobilewalla has a number of other interesting
features, it is infeasible to describe them in this paper
due to length restrictions. We invite the user to visit
the site.

Fig. 10 Hot apps page

56 Mobile Netw Appl (2013) 18:42–59

Fig. 11 Fast rising apps page

6 Related work

Mobilewalla is one of the earliest entrants in the app
search and discovery space. In this section, we describe
few alternatives available for app search.

Appolicious Inc, associated with Yahoo Inc [33],
is a web application to help users easily find mobile
applications that are useful and interesting to them.
The Appolicious recommendation engine determines

what apps you have, what apps your friends and the
rest of the community have, and uses individual app
ratings and reviews to suggest new apps for your use.
Unlike Appolicious, Mobilewalla depends on its own
developed scoring mechanism. Users can search for an
app in the Mobilewalla system using keywords, which
is based on its own index mechanism. Mobilewalla
also identifies similar apps based on content than the
usage, as is the case in Appolicious. The most impor-

Fig. 12 New apps page

Mobile Netw Appl (2013) 18:42–59 57

tant attraction of Mobilewalla [34] is the availability of
different kind of Search functions which are ‘keyword
based search’, ‘category search’ and ‘developer search’
based on the semantics and topics. Because of this
uniqueness, through Mobilewalla one can find a much
larger variety of apps.

Chomp is an app search engine [35] specifically for
iOS platform (iPhone and iPad), that has been ac-
quired by Apple recently. Without any publicly avail-
able information regarding Chomp’s search mecha-
nism, the only resort we had is qualitative comparison
of Chomp’s search result vs. Mobilewalla search result.
In Table 5, we have presented the search results for
both Chomp and Mobilewalla across 5 different key-
words.

It is very clear from the Table 5, that Mobilewalla
is able to provide relevant results in all cases, whereas
Chomp could not provide any result for 3 cases. Gener-
ally, the qualitative comparison of the search results in
Mobilewalla and Chomp across these set of keywords
clearly demonstrate the superiority of Mobilewalla with
respect of Chomp. These keyword search results are
just the subset of keyword searches that we compared
across both Chomp and Mobilewalla. We are not sure
about whether Chomp does the search using semantic
context of the search, but the results seems to demon-
strate even if Chomp uses semantic search, its applica-
tion is very limited.

Mobilewalla, on the other hand, searches apps based
on the extensive semantic content of both the key-

Table 5 Comparison of Mobilewalla and Chomp search result

Comparison of Mobilewalla and Chomp Search

Search keywords Mobilewalla free apps Mobilewalla paid apps Chomp free apps Chomp paid apps

Stanford bike Stanford iWater Stanford college football fans No search results No search results
Stanford magazine Stanford college basketball fans
Stanford ticket office FitVideo: mountain biking
Zing @ Stanford Bike doctor
Stanford lawyer Unofficially Stanford

ESPN Cricket NDTV cricket Cricket trivia No search results No search results
iCricket—most popular Official guide—ICC cricket

cricket app world cup
ESPN score center Cricket reloaded
Crickets Touch cricket
ESPN radio Cricket coach

Voice over IP Rogers hosted IP voice GV mobile + No search results No search results
calling apps Forfone—free phone Acrobits softphone

calls & text
IP-relay IP vision
IP-caller Caller ID ringtones
Easy talk—free text IP vision pro

& phone calls
Singapore taxi Go-taxi booking app Singapore SMRT and taxi guide TaxiCan! (Singapore) Singapore SMRT

and taxi guide
Taxi booking 5.0 World taxi SingaporeTaxi
World taxi-fares and tips Singapore visitor guide

by feel social
TaxiCan! (Singapore) Singapore tourist spots
Taxi Lah! Singapore subway/MRT

Chinese cusine Cookbook cusine Chinese food recipes No search results No search results
Bon Pate Mediteranian cusine LanguageVideo: basic Chinese
Chinese cooking Chinese Chinese
Chinese word search lite Flashcards-Chinese
iStart Chinese! Surf Chinese

Vacation deals Ski vacation deals Vacation cruising—save money Ski vacation deals No search results
Cruise finder Budget travel complete guide Multichoice travel
Fligo.pl 101 tips for traveling on a budget Cruise finder
HulaCopter Hawaii Vacation cruising
Red tag vacations Budget traveler

58 Mobile Netw Appl (2013) 18:42–59

words and app information available in native stores.
As a result, the search outputs are vastly different. For
example, the search term “ESPN Cricket” in iPhone
platform returned no result in Chomp, whereas in
Mobilewalla it returned total 486 apps with “NDTV
Cricket”, “iCricket” as the top two apps. Also, unlike
Mobilewalla, which is applicable in iPhone/iPod/iPad,
Blackberry, Android and Windows platform, Chomp’s
search is limited only to Apple and Android app stores.
Chomp’s trending search option is based on existing
popularity of the app. Whereas Mobilewalla’s trending
search results are based on Mobilewalla’s unique scor-
ing mechanism, which uses other parameters indicating
both the developer’s and user’s engagement.

AppBrain is a website [36] to search Android apps
available specifically in the Google Android market,
whereas MobileWalla [34] covers all the major smart
phone platforms (Windows, Blackberry, Android and
Apple). The main core feature of Mobilewalla system
is its search functionality. It has semantic enabled key-
word, category and developer based search functional-
ities. Keyword search in Mobilewalla is implemented
in a way to find the semantically meaningful apps but
not purely based on exact string match like most of the
currently available app search engines like AppBrain
do.

uQuery.com [37] is a mobile app search platform
based on social media Facebook [38]. Users can search
and find applications on the iTunes App store based
on what apps friends in Facebook are using. The
key difference between Mobilewalla and uQuery is
in the search mechanism. Mobilewalla relies on its
own metrics which is combination of both the usage
and the developer’s engagement with an app, whereas
uQuery relies on usage by friends in Facebook. The
Mobilewalla’s keyword based search engine is much
more extensive than uQuery. Mobilewalla’s keyword
search can handle semantically related keywords, key-
words appearing in title, description and user com-
ments. Mobilewalla’s similar app search mechanism is
based on semantic similarity of apps, rather than the
usage.

In summary, the key difference between the
Mobilewalla and existing app search platforms is in
two fronts. First, Mobilewalla depends on the semantic
description of apps to enable search based on keywords
and similar apps. Second, Mobilewalla ranks the app
based on a scoring mechanism that incorporate both the
user and the developer’s involvement with the app. As
discussed above, the existing search platforms consider
only the user’s aspect; like Mobilewalla developer’s
involvement with the app and the developer’s history
is not considered.

Having compared Mobilewalla with some of its com-
petitors in terms of technology, let us now focus on
how Mobilewalla differs in terms of usability. At high
level all the above systems work in the very similar
way—there is a simple GUI with one search text box.
Upon submitting the search query in the search text
box, the result of the search is displayed. This basic
mechanism is inspired by Google search. In AppBrain,
the search result is displayed as a list, whereas both
in Chomp and Mobilewalla, the result is displayed in
matrix fashion. We believe the biggest usability ad-
vantage of Mobilewalla compared to its competitors is
the different ways the search results can be sorted. In
Mobilewalla, the results are sorted by “free” app vs.
“paid” app (which is also available in Chomp). Addi-
tionally, the Mobilewalla search results can be sorted
based on search relevance (which is the default sorting
scheme), popularity of the apps and release dates. Con-
sidering that a list of apps is a multi-dimensional data
space, this allows the users to browse the results from
different dimensions. Such multi-dimensional sorting
mechanism is not there in Chomp.

One of the challenges for mobile app users is finding
interesting apps. The specialized lists of Mobilewalla
such as Hot App, Fast Movers, New App provide easys
way of finding some interesting apps. This is another
usability feature of Mobilewalla compared to Chomp.

Knowing which app is good and which one is not so
good is an issue for app users. Chomp and AppBrain
provide users with data related to reviews and native
store ratings. Whereas, at Mobilewalla, we believe app
users get overwhelmed with the reviews and ratings and
do not always know, how to interpret these review and
ratings. So we have developed a single MWS metrics,
that can be used by app users to judge the quality of an
app. The metrics is being widely accepted in the USA.
Currently NYTimes publishes its featured app lists
along with movie ratings (provided by Neilsen) based
on MWS. In addition about 300 other US news papers
publish MWS based app ratings. Such a single metric
to measure the quality of an app instead of multiple
reviews and ratings definitely increases the usability of
the Mobilewalla system than its competitors.

7 Conclusion

In this paper we have described the Mobilewalla app
search engine. We have described the architecture and
some of the key feature details along with MWS and
developer score computation. With the help of a set of

http://www.uquery.com/

Mobile Netw Appl (2013) 18:42–59 59

screen shots we have demonstrated some of the func-
tionalities of Mobilewalla. Lastly, in related work we
have qualitatively compared Mobilewalla system with
some of the other existing systems such as Chomp and
Appbrain. This is a very initial reporting of the Mobile-
walla system. In future, once the intellectual property
rights of Mobilewalla has been addressed by patent ap-
plication, we intend to publish the details of the similar-
ity app computation in Mobilewalla. We also intend to
do a through usability test of the Mobilewalla represen-
tation of the app data compared to other competitors,
Chomp and AppBrain. This will require human subject
based controlled experiment. Lastly, though MWS and
MWDS have been commercially accepted by news and
media community, we intend to develop a theoretical
basis for these score computations. In summary, we
believe this paper will create a series of other research
in the area of semantic search and product ratings in the
mobile app domain.

References

1. Ben G. Android market grows a staggering 861.5 per cent. http://
www.knowyourmobile.com/smartphones/smartphoneapps/
News/781397/android_market_grows_a_staggering_8615_
per_cent.html. Accessed 13 May 2011

2. Brothersoft. Mobile apps market to reach $38 billion revenue
by 2015. http://news.brothersoft.com/mobile-apps-market-to-
reach-38-billion-revenue-by-2015-6089.html. Accessed 13 May
2011

3. Google Inc. Android market. https://market.android.com/.
Accessed 13 May 2011

4. Apple Inc. Apple app store. http://www.istoreus.com/
home.html. Accessed 13 May 2011

5. Business Insider. Why native app stores like itunes and an-
droid marketplace are bad for mobile developers. http://www.
businessinsider.com/why-native-app-stores-like-itunes-and-
andoid-marketplace_are-bad-business-for-mobile-developers-
2011-5. Accessed 13 May 2011

6. Amit Agarwal. Would you like to try android apps before
buying? http://www.labnol.org/internet/android-apps-try-
before-buying/19422/. Accessed 13 May 2011

7. Gigaom. Appsfire scores $3.6m as app discovery demands
grow. http://gigaom.com/2011/05/30/appsfire-scores-3-6m-as-
app-discovery-demands-grow/. Accessed 13 May 2011

8. CNet. The mobile app discovery problem. http://news.cnet.
com/8301-30684_3-20011241-265.html. Accessed 13 May 2011

9. Zdnet. Google finally applies its own search technology to
apps. http://www.zdnet.com/blog/mobile-gadgeteer/google-
finally-applies-its-own-search-technology-to-apps/3332?tag=
mantle_skin;content. Accessed 13 May 2011

10. Zdnet. App search engine competition heating up. http://
www.zdnet.com/blog/mobile-gadgeteer/app-search-engine-
competition-heating-up/3785. Accessed 13 May 2011

11. New York Times. Popular demand: App wars. http://www.
nytimes.com/interactive/2011/05/16/business/media/16most.
html?ref=media . Accessed 13 May 2011

12. Lazaridis M. Blackberry app world. http://us.blackberry.
com/apps-software/appworld/. Accessed 13 May 2011

13. Gates III WHB. Windows. http://marketplace.windowsphone.
com/Default.aspx. Accessed 13 May 2011

14. Heydon A, Najork M (1999) Mercator: a scalable, extensi-
ble web crawler. World Wide Web 2:219–229. doi:10.1023/
A:1019213109274

15. Boldi P, Codenotti B, Santini M, Vigna S (2004) Ubicrawler:
a scalable fully distributed web crawler. Softw Pract Exper
34(8):711–726. doi:10.1002/spe.587

16. Hsieh JM, Gribble SD, Levy HM (2010) The architec-
ture and implementation of an extensible web crawler.
In: Proceedings of the 7th USENIX conference on net-
worked systems design and implementation, ser. NSDI’10.
USENIX Association, Berkeley, CA, USA, pp 22–22. http://
portal.acm.org/citation.cfm?id=1855711.1855733

17. Garrett JJ. Ajax. http://www.ajax.org/. Accessed 13 May 2011
18. Microsoft Inc. The official Microsoft Silverlight web site.

http://www.silverlight.net/. Accessed 17 May 2011
19. Adobe Inc. ActionScript 3.0 Overview. http://www.adobe.

com/devnet/actionscript/articles/actionscript3_overview.html.
Accessed 17 May 2011

20. Kayak. Kayak. http://www.kayak.com. Accessed 17 May 2011
21. Crockford D. Json. http://json.org/. Accessed 13 May 2011
22. Resig J et al. JQuery. http://jquery.com/. Accessed 13 May

2011
23. Apache. Apache cassandra project. http://cassandra.apache.

org/. Accessed 24 Nov 2011
24. Apache. Lucene. http://lucene.apache.org/. Accessed 13 May

2011
25. Agrawal D, Das S, El Abbadi A (2011) Big data and cloud

computing: current state and future opportunities. In: Pro-
ceedings of the 14th international conference on extend-
ing database technology, ser. EDBT/ICDT ’11. ACM, New
York, NY, USA, pp 530–533. doi:10.1145/1951365.1951432

26. Suchanek FM, Kasneci G, Weikum G (2008) Yago: a large
ontology from wikipedia and wordnet. In: Web seman-
tics: science, services and agents on the World Wide Web.
World Wide Web conference 2007 semantic web track,
vol 6(3), pp 203–217. http://www.sciencedirect.com/science/
article/pii/S1570826808000437

27. Apache. OpenNLP. http://incubator.apache.org/opennlp/.
Accessed 13 May 2011

28. Amazon Inc. Elastic block store. http://aws.amazon.com/ebs/.
Accessed 24 Nov 2011

29. Princeton University About wordnet. http://wordnet.
princeton.edu. Accessed 17 May 2011

30. VMWare Inc. RabbitMQ. http://www.rabbitmq.com/. Ac-
cessed 24 Nov 2011

31. Apache. Hadoop JoBTracker. http://wiki.apache.org/hadoop/
JobTracker. Accessed 24 Nov 2011

32. Apache. Hadoop. http://hadoop.apache.org/. Accessed 24 Nov
2011

33. Warms A. Find mobile apps you will love. http://www.
appolicious.com/. Accessed 17 May 2011

34. Datta A. Helping you navigate the app world. http://www.
mobilewalla.com/. Accessed 13 May 2011

35. Ben K, Cathy E. The appstore search engine. http://www.
chomp.com/. Accessed 17 May 2011

36. Appbrain. Find the best android apps. http://www.appbrain.
com/. Accessed 17 May 2011

37. uQuery. The appstore search engine. http://www.uquery.
com/. Accessed 17 May 2011

38. Zuckerberg ME. Facebook. http://www.facebook.com. Ac-
cessed 13 May 2011

http://www.knowyourmobile.com/smartphones/smartphoneapps/News/781397/android_market_grows_a_staggering_8615_per_cent.html
http://www.knowyourmobile.com/smartphones/smartphoneapps/News/781397/android_market_grows_a_staggering_8615_per_cent.html
http://www.knowyourmobile.com/smartphones/smartphoneapps/News/781397/android_market_grows_a_staggering_8615_per_cent.html
http://www.knowyourmobile.com/smartphones/smartphoneapps/News/781397/android_market_grows_a_staggering_8615_per_cent.html
http://news.brothersoft.com/mobile-apps-market-to-reach-38-billion-revenue-by-2015-6089.html
http://news.brothersoft.com/mobile-apps-market-to-reach-38-billion-revenue-by-2015-6089.html
https://market.android.com/
http://www.istoreus.com/home.html
http://www.istoreus.com/home.html
http://www.businessinsider.com/why-native-app-stores-like-itunes-and-andoid-marketplace_are-bad-business-for-mobile-developers-2011-5
http://www.businessinsider.com/why-native-app-stores-like-itunes-and-andoid-marketplace_are-bad-business-for-mobile-developers-2011-5
http://www.businessinsider.com/why-native-app-stores-like-itunes-and-andoid-marketplace_are-bad-business-for-mobile-developers-2011-5
http://www.businessinsider.com/why-native-app-stores-like-itunes-and-andoid-marketplace_are-bad-business-for-mobile-developers-2011-5
http://www.labnol.org/internet/android-apps-try-before-buying/19422/
http://www.labnol.org/internet/android-apps-try-before-buying/19422/
http://gigaom.com/2011/05/30/appsfire-scores-3-6m-as-app-discovery-demands-grow/
http://gigaom.com/2011/05/30/appsfire-scores-3-6m-as-app-discovery-demands-grow/
http://news.cnet.com/8301-30684_3-20011241-265.html
http://news.cnet.com/8301-30684_3-20011241-265.html
http://www.zdnet.com/blog/mobile-gadgeteer/google-finally-applies-its-own-search-technology-to-apps/3332?tag=mantle_skin;content
http://www.zdnet.com/blog/mobile-gadgeteer/google-finally-applies-its-own-search-technology-to-apps/3332?tag=mantle_skin;content
http://www.zdnet.com/blog/mobile-gadgeteer/google-finally-applies-its-own-search-technology-to-apps/3332?tag=mantle_skin;content
http://www.zdnet.com/blog/mobile-gadgeteer/app-search-engine-competition-heating-up/3785
http://www.zdnet.com/blog/mobile-gadgeteer/app-search-engine-competition-heating-up/3785
http://www.zdnet.com/blog/mobile-gadgeteer/app-search-engine-competition-heating-up/3785
http://www.nytimes.com/interactive/2011/05/16/business/media/16most.html?ref=media
http://www.nytimes.com/interactive/2011/05/16/business/media/16most.html?ref=media
http://www.nytimes.com/interactive/2011/05/16/business/media/16most.html?ref=media
http://us.blackberry.com/apps-software/appworld/
http://us.blackberry.com/apps-software/appworld/
http://marketplace.windowsphone.com/Default.aspx
http://marketplace.windowsphone.com/Default.aspx
http://dx.doi.org/10.1023/A:1019213109274
http://dx.doi.org/10.1023/A:1019213109274
http://dx.doi.org/10.1002/spe.587
http://portal.acm.org/citation.cfm?id=1855711.1855733
http://portal.acm.org/citation.cfm?id=1855711.1855733
http://www.ajax.org/
http://www.silverlight.net/
http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
http://www.kayak.com
http://json.org/
http://jquery.com/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://lucene.apache.org/
http://doi.acm.org/10.1145/1951365.1951432
http://www.sciencedirect.com/science/article/pii/S1570826808000437
http://www.sciencedirect.com/science/article/pii/S1570826808000437
http://incubator.apache.org/opennlp/
http://aws.amazon.com/ebs/
http://wordnet.princeton.edu
http://wordnet.princeton.edu
http://www.rabbitmq.com/
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/JobTracker
http://hadoop.apache.org/
http://www.appolicious.com/
http://www.appolicious.com/
http://www.mobilewalla.com/
http://www.mobilewalla.com/
http://www.chomp.com/
http://www.chomp.com/
http://www.appbrain.com/
http://www.appbrain.com/
http://www.uquery.com/
http://www.uquery.com/
http://www.facebook.com

	A Mobile App Search Engine
	Abstract
	Introduction
	Overview
	Architecture
	Data collector (DC)
	The Mobilewalla database
	Computational Backend (CB)
	User interface and query handler

	Scoring computation
	Mobilewalla Score (MWS)
	Mobilewalla developer reputation score (MWDS)

	Screen shots and descriptions
	Related work
	Conclusion
	References

